Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397118

RESUMEN

Chronic and excessive ultraviolet (UVA/UVB) irradiation exposure is known as a major contributor to premature skin aging, which leads to excessive reactive oxygen species generation, disturbed extracellular matrix homeostasis, DNA damage, and chronic inflammation. Sunscreen products are the major preventive option against UVR-induced photodamage, mostly counteracting the acute skin effects and only mildly counteracting accelerated aging. Therefore, novel anti-photoaging and photopreventive compounds are a subject of increased scientific interest. Our previous investigations revealed that the endemic plant Haberlea rhodopensis Friv. (HRE) activates the antioxidant defense through an NRF2-mediated mechanism in neutrophiles. In the present study, we aimed to investigate the photoprotective potential of HRE and two of its specialized compounds-the phenylethanoid glycosides myconoside (MYC) and calceolarioside E (CAL)-in UVA/UVB-stimulated human keratinocytes in an in vitro model of photoaging. The obtained data demonstrated that the application of HRE, MYC, and CAL significantly reduced intracellular ROS formation in UVR-exposed HaCaT cells. The NRF2/PGC-1α and TGF-1ß/Smad/Wnt signaling pathways were pointed out as having a critical role in the observed CAL- and MYC-induced photoprotective effect. Collectively, CAL is worth further evaluation as a potent natural NRF2 activator and a promising photoprotective agent that leads to the prevention of UVA/UVB-induced premature skin aging.


Asunto(s)
Ácidos Cafeicos , Glucósidos , Envejecimiento de la Piel , Enfermedades de la Piel , Humanos , Ácidos Cafeicos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Piel/metabolismo , Enfermedades de la Piel/metabolismo , Rayos Ultravioleta/efectos adversos
2.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791434

RESUMEN

Extracts from medicinal plants are widely used in the treatment and prevention of different diseases. Micromeria frivaldszkyana is a Balkan endemic species with reported antioxidant and antimicrobial characteristics; however, its phytochemical composition is not well defined. Here, we examined the metabolome of M. frivaldszkyana by chromatography-mass spectrometry (GC-MS), ultra-performance liquid chromatography-mass spectrometry (UPLC-MS-MS), and inductively coupled plasma mass spectrometry (ICP-MS). Amino acids, organic acids, sugars, and sugar alcohols were the primary metabolites with the highest levels in the plant extract. Detailed analysis of the sugar content identified high levels of sucrose, glucose, mannose, and fructose. Lipids are primary plant metabolites, and the analysis revealed triacylglycerols as the most abundant lipid group. Potassium (K), magnesium (Mg), zinc (Zn), and calcium (Ca) were the elements with the highest content. The results showed linarin, 3-caffeoil-quinic acid, and rosmarinic acid, as well as a number of polyphenols, as the most abundant secondary metabolites. Among the flavonoids and polyphenols with a high presence were eupatorin, kaempferol, and apigenin-compounds widely known for their bioactive properties. Further, the acute toxicity and potential anti-inflammatory activity of the methanolic extract were evaluated in Wistar rats. No toxic effects were registered after a single oral application of the extract in doses of between 200 and 5000 mg/kg bw. A fourteen-day pre-treatment with methanolic extract of M. frivaldszkyana in doses of 250, 400, and 500 mg/kg bw induced anti-inflammatory activity in the 1st, 2nd, and 3rd hours after carrageenan injection in a model of rat paw edema. This effect was also present in the 4th hour only in the group treated with a dose of 500 mg/kg. In conclusion, M. frivaldszkyana extract is particularly rich in linarin, rosmarinic acid, and flavonoids (eupatorin, kaempferol, and apigenin). Its methanolic extract induced no toxicity in male Wistar rats after oral application in doses of up to 5000 mg/kg bw. Additionally, treatment with the methanolic extract for 14 days revealed anti-inflammatory potential in a model of rat paw edema on the 1st, 2nd, and 3rd hours after the carrageenan injection. These results show the anti-inflammatory potential of the plant, which might be considered for further exploration and eventual application as a phytotherapeutic agent.


Asunto(s)
Antiinflamatorios , Extractos Vegetales , Ratas Wistar , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/química , Ratas , Metanol/química , Edema/tratamiento farmacológico , Edema/inducido químicamente , Sapotaceae/química , Metaboloma/efectos de los fármacos
3.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38069358

RESUMEN

Marrubium species have been used since ancient times as food additives and curative treatments. Their phytochemical composition and various pharmacological activities were the focus of a number of scientific investigations but no comprehensive metabolome profiling to identify the numerous primary and secondary metabolites has been performed so far. This study aimed to generate a comprehensive picture of the total metabolite content of two Marrubium species-M. peregrinum and M. friwaldskyanum-to provide detailed information about the main primary and secondary metabolites. In addition, the elemental composition was also evaluated. For this purpose, non-targeted metabolomic analyses were conducted using GC-MS, UPLC-MS/MS and ICP-MS approaches. Nearly 500 compounds and 12 elements were detected and described. The results showed a strong presence of phenolic acids, flavonoids and their glucosides, which are generally of great interest due to their various pharmacological activities. Furthermore, tissue-specific analyses for M. friwaldskyanum stem, leaves and flowers were carried out in order to outline the sources of potentially important bioactive molecules. The results generated from this study depict the Marrubium metabolome and reveal its dual scientific importance-from one side, providing information about the metabolites that is fundamental and vital for the survival of these species, and from the other side, defining the large diversity of secondary substances that are a potential source of phytotherapeutic agents.


Asunto(s)
Marrubium , Marrubium/química , Marrubium/metabolismo , Cromatografía Liquida , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem , Flavonoides/farmacología , Metaboloma
4.
Cell Mol Life Sci ; 77(4): 705-718, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31250033

RESUMEN

Oxidative stress can lead to plant growth retardation, yield loss, and death. The atr7 mutant of Arabidopsis thaliana exhibits pronounced tolerance to oxidative stress. Using positional cloning, confirmed by knockout and RNA interference (RNAi) lines, we identified the atr7 mutation and revealed that ATR7 is a previously uncharacterized gene with orthologs in other seed plants but with no homology to genes in lower plants, fungi or animals. Expression of ATR7-GFP fusion shows that ATR7 is a nuclear-localized protein. RNA-seq analysis reveals that transcript levels of genes encoding abiotic- and oxidative stress-related transcription factors (DREB19, HSFA2, ZAT10), chromatin remodelers (CHR34), and unknown or uncharacterized proteins (AT5G59390, AT1G30170, AT1G21520) are elevated in atr7. This indicates that atr7 is primed for an upcoming oxidative stress via pathways involving genes of unknown functions. Collectively, the data reveal ATR7 as a novel seed plants-specific nuclear regulator of oxidative stress response.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Semillas/genética , Arabidopsis/fisiología , Genes de Plantas , Mutación , Estrés Oxidativo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Factores de Transcripción/genética
5.
J Exp Bot ; 71(20): 6340-6354, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32720687

RESUMEN

Leaf senescence is the final stage of leaf development and is induced by the gradual occurrence of age-related changes (ARCs). The process of leaf senescence has been well described, but the cellular events leading to this process are still poorly understood. By analysis of progressively ageing, but not yet senescing, Arabidopsis thaliana rosette leaves, we aimed to better understand processes occurring prior to the onset of senescence. Using gene expression analysis, we found that as leaves mature, genes responding to oxidative stress and genes involved in stress hormone biosynthesis and signalling were up-regulated. A decrease in primary metabolites that provide protection against oxidative stress was a possible explanation for the increased stress signature. The gene expression and metabolomics changes occurred concomitantly to a decrease in drought, salinity, and dark stress tolerance of individual leaves. Importantly, stress-related genes showed elevated expression in the early ageing mutant old5 and decreased expression in the delayed ageing mutant ore9. We propose that the decreased stress tolerance with age results from the occurrence of senescence-inducing ARCs that is integrated into the leaf developmental programme, and that this ensures a timely and certain death.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo
6.
Plant Physiol ; 177(3): 1319-1338, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29789435

RESUMEN

The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress- and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast- and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis- and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness.


Asunto(s)
Lamiales/fisiología , Metabolismo de los Lípidos/fisiología , Metaboloma/fisiología , Proteínas de Plantas/genética , Autofagia , Oscuridad , Deshidratación , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Proteínas de Plantas/metabolismo
7.
Planta Med ; 84(12-13): 855-873, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29843183

RESUMEN

Plants have always been used as medicines since ancient times to treat diseases. The knowledge around the active components of herbal preparations has remained nevertheless fragmentary: the biosynthetic pathways of many secondary metabolites of pharmacological importance have been clarified only in a few species, while the chemodiversity present in many medicinal plants has remained largely unexplored. Despite the advancements of synthetic biology for production of medicinal compounds in heterologous hosts, the native plant species are often the most reliable and economic source for their production. It thus becomes fundamental to investigate the metabolic composition of medicinal plants to characterize their natural metabolic diversity and to define the biosynthetic routes in planta of important compounds to develop strategies to further increase their content. We present here a number of case studies for selected classes of secondary metabolites and we review their health benefits and the historical developments in their structural elucidation and characterization of biosynthetic genes. We cover the cases of benzoisoquinoline and monoterpenoid indole alkaloids, cannabinoids, caffeine, ginsenosides, withanolides, artemisinin, and taxol; we show how the "early" biochemical or the more recent integrative approaches-based on omics-analyses-have helped to elucidate their metabolic pathways and cellular compartmentation. We also summarize how the knowledge generated about their biosynthesis has been used to develop metabolic engineering strategies in heterologous and native hosts. We conclude that following the advent of novel, high-throughput and cost-effective analytical technologies, the secondary metabolism of medicinal plants can now be examined under the lens of systems biology.


Asunto(s)
Alcaloides/metabolismo , Productos Biológicos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Metabolómica , Fitoquímicos/metabolismo , Plantas Medicinales/química , Metabolismo Secundario , Vías Biosintéticas , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Análisis de Secuencia de ADN
8.
Plant Cell Environ ; 38(2): 349-63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24738758

RESUMEN

Oxidative stress causes dramatic changes in the expression levels of many genes. The formation of a functional protein through successful mRNA translation is central to a coordinated cellular response. To what extent the response towards reactive oxygen species (ROS) is regulated at the translational level is poorly understood. Here we analysed leaf- and tissue-specific translatomes using a set of transgenic Arabidopsis thaliana lines expressing a FLAG-tagged ribosomal protein to immunopurify polysome-bound mRNAs before and after oxidative stress. We determined transcript levels of 171 ROS-responsive genes upon paraquat treatment, which causes formation of superoxide radicals, at the whole-organ level. Furthermore, the translation of mRNAs was determined for five cell types: mesophyll, bundle sheath, phloem companion, epidermal and guard cells. Mesophyll and bundle sheath cells showed the strongest response to paraquat treatment. Interestingly, several ROS-responsive transcription factors displayed cell type-specific translation patterns, while others were translated in all cell types. In part, cell type-specific translation could be explained by the length of the 5'-untranslated region (5'-UTR) and the presence of upstream open reading frames (uORFs). Our analysis reveals insights into the translational regulation of ROS-responsive genes, which is important to understanding cell-specific responses and functions during oxidative stress.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Genes de Plantas , Paraquat/toxicidad , Hojas de la Planta/citología , Biosíntesis de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Regiones no Traducidas 5'/genética , Arabidopsis/efectos de los fármacos , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Datos de Secuencia Molecular , Nucleótidos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Polirribosomas/efectos de los fármacos , Polirribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
9.
Cell Mol Life Sci ; 70(4): 689-709, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22996258

RESUMEN

Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation sequencing revealed a drought-induced reprogramming, which redirected resources from growth towards cell protection. Repression of photosynthetic and growth-related genes during water deficiency was concomitant with induction of transcription factors (members of the NAC, NF-YA, MADS box, HSF, GRAS, and WRKY families) presumably acting as master switches of the genetic reprogramming, as well as with an upregulation of genes related to sugar metabolism, signaling, and genes encoding early light-inducible (ELIP), late embryogenesis abundant (LEA), and heat shock (HSP) proteins. At the same time, genes encoding other LEA, HSP, and stress protective proteins were constitutively expressed at high levels even in unstressed controls. Genes normally involved in tolerance to salinity, chilling, and pathogens were also highly induced, suggesting a possible cross-tolerance against a number of abiotic and biotic stress factors. A notable percentage of the genes highly regulated in dehydration and subsequent rehydration were novel, with no sequence homology to genes from other plant genomes. Additionally, an extensive antioxidant gene network was identified with several gene families possessing a greater number of antioxidant genes than most other species with sequenced genomes. Two of the transcripts most abundant during all conditions encoded catalases and five more catalases were induced in water-deficient samples. Using the pharmacological inhibitor 3-aminotriazole (AT) to compromise catalase activity resulted in increased sensitivity to desiccation. Metabolome analysis by GC or LC-MS revealed accumulation of sucrose, verbascose, spermidine, and γ-aminobutyric acid during drought, as well as particular secondary metabolites accumulating during rehydration. This observation, together with the complex antioxidant system and the constitutive expression of stress protective genes suggests that both constitutive and inducible mechanisms contribute to the extreme desiccation tolerance of H. rhodopensis.


Asunto(s)
Craterostigma/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Aclimatación , Catalasa/genética , Craterostigma/genética , Desecación , Sequías , Perfilación de la Expresión Génica , Metaboloma , Estrés Oxidativo , Agua/metabolismo
10.
Cell Mol Life Sci ; 69(19): 3175-86, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22833170

RESUMEN

Resurrection plants are a small but diverse group of land plants characterized by their tolerance to extreme drought or desiccation. They have the unique ability to survive months to years without water, lose most of the free water in their vegetative tissues, fall into anabiosis, and, upon rewatering, quickly regain normal activity. Thus, they are fundamentally different from other drought-surviving plants such as succulents or ephemerals, which cope with drought by maintaining higher steady state water potential or via a short life cycle, respectively. This review describes the unique physiological and molecular adaptations of resurrection plants enabling them to withstand long periods of desiccation. The recent transcriptome analysis of Craterostigma plantagineum and Haberlea rhodopensis under drought, desiccation, and subsequent rehydration revealed common genetic pathways with other desiccation-tolerant species as well as unique genes that might contribute to the outstanding desiccation tolerance of the two resurrection species. While some of the molecular responses appear to be common for both drought stress and desiccation, resurrection plants also possess genes that are highly induced or repressed during desiccation with no apparent sequence homologies to genes of other species. Thus, resurrection plants are potential sources for gene discovery. Further proteome and metabolome analyses of the resurrection plants contributed to a better understanding of molecular mechanisms that are involved in surviving severe water loss. Understanding the cellular mechanisms of desiccation tolerance in this unique group of plants may enable future molecular improvement of drought tolerance in crop plants.


Asunto(s)
Adaptación Fisiológica , Sequías , Fenómenos Fisiológicos de las Plantas/fisiología , Craterostigma/genética , Craterostigma/metabolismo , Desecación , Magnoliopsida/genética , Magnoliopsida/metabolismo , Proteoma , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Agua
11.
Phytochemistry ; 174: 112347, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32203741

RESUMEN

Over 8000 different flavonoids have been described and a considerable number of new flavonoid structures are being elucidated every year. The advent of metabolomics alongside the development of phytochemical genetics - wherein the genetic basis underlying the regulation of the levels of plant metabolites is determined - has provided a massive boost to such efforts. That said our understanding of the individual function(s) of the vast majority of the metabolites that constitute this important class of phytochemicals remains unknown. Here we review what is known concerning the major decorative modifications of flavonoids in plants, namely hydroxylation, glycosylation, methylation and acylation. Our major focus is with regard to the in planta function of these modified compounds, however, we also highlight the demonstrated bioactive roles which they possess. We additionally performed a comprehensive survey of the flavonoids listed in the KNApSAcK database in order to assess the frequency of occurrence of each type of flavonoid modification. We conclude that whilst considerable research has been carried out regarding the biological roles of flavonoids most studies to date have merely provided information on the compound class or sub-classes thereof as a whole with too little currently known on the specific role of individual metabolites. We, therefore, finally suggest a framework based on currently available tools by which the relative importance of the individual compounds can be assessed under various biological conditions in order to fill this knowledge-gap.


Asunto(s)
Flavonoides , Plantas , Acilación , Glicosilación , Fitoquímicos
12.
Biotechnol Adv ; 32(6): 1091-101, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24681091

RESUMEN

Resurrection species are a group of land plants that can tolerate extreme desiccation of their vegetative tissues during harsh drought stress, and still quickly - often within hours - regain normal physiological and metabolic functions following rehydration. At the molecular level, this desiccation tolerance is attributed to basal cellular mechanisms including the constitutive expression of stress-associated genes and high levels of protective metabolites present already in the absence of stress, as well as to transcriptome and metabolome reconfigurations rapidly occurring during the initial phases of drought stress. Parts of this response are conferred by unique metabolites, including a diverse array of sugars, phenolic compounds, and polyols, some of which accumulate to high concentrations within the plant cell. In addition to drought stress, these metabolites are proposed to contribute to the protection against other abiotic stresses and to an increased oxidative stress tolerance. Recently, extracts of resurrection species and particular secondary metabolites therein were reported to display biological activities of importance to medicine, with e.g. antibacterial, anticancer, antifungal, and antiviral activities, rendering them possible candidates for the development of novel drug substances as well as for cosmetics. Herein, we provide an overview of the metabolite composition of resurrection species, summarize the latest reports related to the use of natural products from resurrection plants, and outline their potential for medical applications.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Craterostigma , Extractos Vegetales , Animales , Línea Celular , Craterostigma/química , Craterostigma/genética , Craterostigma/metabolismo , Humanos , Ingeniería Metabólica , Ratones
13.
Front Plant Sci ; 4: 499, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376451

RESUMEN

Haberlea rhodopensis is a resurrection species with extreme resistance to drought stress and desiccation but also with ability to withstand low temperatures and freezing stress. In order to identify biochemical strategies which contribute to Haberlea's remarkable stress tolerance, the metabolic reconfiguration of H. rhodopensis during low temperature (4°C) and subsequent return to optimal temperatures (21°C) was investigated and compared with that of the stress tolerant Thellungiella halophyla and the stress sensitive Arabidopsis thaliana. Metabolic analysis by GC-MS revealed intrinsic differences in the metabolite levels of the three species even at 21°C. H. rhodopensis had significantly more raffinose, melibiose, trehalose, rhamnose, myo-inositol, sorbitol, galactinol, erythronate, threonate, 2-oxoglutarate, citrate, and glycerol than the other two species. A. thaliana had the highest levels of putrescine and fumarate, while T. halophila had much higher levels of several amino acids, including alanine, asparagine, beta-alanine, histidine, isoleucine, phenylalanine, serine, threonine, and valine. In addition, the three species responded differently to the low temperature treatment and the subsequent recovery, especially with regard to the sugar metabolism. Chilling induced accumulation of maltose in H. rhodopensis and raffinose in A. thaliana but the raffinose levels in low temperature exposed Arabidopsis were still much lower than these in unstressed Haberlea. While all species accumulated sucrose during chilling, that accumulation was transient in H. rhodopensis and A. thaliana but sustained in T. halophila after the return to optimal temperature. Thus, Haberlea's metabolome appeared primed for chilling stress but the low temperature acclimation induced additional stress-protective mechanisms. A diverse array of sugars, organic acids, and polyols constitute Haberlea's main metabolic defence mechanisms against chilling, while accumulation of amino acids and amino acid derivatives contribute to the low temperature acclimation in Arabidopsis and Thellungiella. Collectively, these results show inherent differences in the metabolomes under the ambient temperature and the strategies to respond to low temperature in the three species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA