Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Appl Environ Microbiol ; 90(6): e0024424, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38780510

RESUMEN

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase, and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, demonstrate complex formation between TclI, TclJ, and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core. IMPORTANCE: Thiopeptides are a family of antimicrobial peptides characterized for having sulfur-containing heterocycles and for being highly post-translationally modified. Numerous thiopeptides have been identified; almost all of which inhibit protein synthesis in gram-positive bacteria. These intrinsic antimicrobial properties make thiopeptides promising candidates for the development of new antibiotics. The thiopeptide micrococcin is synthesized by the ribosome and undergoes several post-translational modifications to acquire its bioactivity. In this study, we identify key interactions within the enzymatic complex that carries out cysteine to thiazole conversion in the biosynthesis of micrococcin.


Asunto(s)
Bacteriocinas , Cisteína , Tiazoles , Tiazoles/metabolismo , Cisteína/metabolismo , Bacteriocinas/metabolismo , Bacteriocinas/química , Bacteriocinas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Procesamiento Proteico-Postraduccional , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(44): 12450-12455, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791142

RESUMEN

Thiopeptides, including micrococcins, are a growing family of bioactive natural products that are ribosomally synthesized and heavily modified. Here we use a refactored, modular in vivo system containing the micrococcin P1 (MP1) biosynthetic genes (TclIJKLMNPS) from Macrococcus caseolyticus str 115 in a genetically tractable Bacillus subtilis strain to parse the processing steps of this pathway. By fusing the micrococcin precursor peptide to an affinity tag and coupling it with catalytically defective enzymes, biosynthetic intermediates were easily captured for analysis. We found that two major phases of molecular maturation are separated by a key C-terminal processing step. Phase-I conversion of six Cys residues to thiazoles (TclIJN) is followed by C-terminal oxidative decarboxylation (TclP). This TclP-mediated oxidative decarboxylation is a required step for the peptide to progress to phase II. In phase II, Ser/Thr dehydration (TclKL) and peptide macrocycle formation (TclM) occurs. A C-terminal reductase, TclS, can optionally act on the substrate peptide, yielding MP1, and is shown to act late in the pathway. This comprehensive characterization of the MP1 pathway prepares the way for future engineering efforts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriocinas/metabolismo , Péptidos/metabolismo , Staphylococcaceae/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacteriocinas/química , Bacteriocinas/genética , Vías Biosintéticas/genética , Modelos Moleculares , Estructura Molecular , Péptidos/química , Péptidos/genética , Conformación Proteica , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Staphylococcaceae/enzimología , Staphylococcaceae/genética
3.
World J Microbiol Biotechnol ; 33(6): 119, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28497389

RESUMEN

Initially discovered in the mid-twentieth century, thiopeptides constitute a diverse family of bacterially produced natural products exhibiting a remarkable array of biological properties. Only in the last several years have the details of thiopeptide biosynthesis been uncovered by a combination of genomic, genetic, and biochemical approaches. Thiopeptides are now known to be ribosomally synthesized and subsequently densely modified to carry azol(in)es, dehydro amino acids, and various other pathway-specific decorations. The defining feature of thiopeptides is a central six-membered nitrogenous ring that constrains peptide macrocycles of varying sequences and sizes. Recent landmark studies have defined the precisely orchestrated posttranslational modification cascade culminating in thiopeptide product formation. Because diverse thiopeptides are processed by a relatively small number of well-conserved enzymes, it has been suggested that artificial diversification of the precursor peptide could allow a vast new chemical space to be explored for clinically important activities. The success of this strategy depends on the plasticity of thiopeptide processing machinery, an open question that warrants further investigation. There is an urgent need therefore to leverage established thiopeptide research platforms to investigate substrate-enzyme specificity and devise intelligent diversification strategies for library generation. Meanwhile, the distinct genomic signatures of conserved thiopeptide-associated genes will enable the continued mining of nature for novel compounds and processing enzymes.


Asunto(s)
Biosíntesis de Péptidos , Péptidos/química , Péptidos/metabolismo , Ingeniería de Proteínas , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Bacteriocinas , Genes Bacterianos , Genómica , Estructura Molecular , Familia de Multigenes , Péptidos/genética , Procesamiento Proteico-Postraduccional , Ribosomas/metabolismo
4.
J Bacteriol ; 198(18): 2431-8, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27381911

RESUMEN

UNLABELLED: Thiopeptides represent one of several families of highly modified peptide antibiotics that hold great promise for natural product engineering. These macrocyclic peptides are produced by a combination of ribosomal synthesis and extensive posttranslational modification by dedicated processing enzymes. We previously identified a compact, plasmid-borne gene cluster for the biosynthesis of micrococcin P1 (MP1), an archetypal thiopeptide antibiotic. In an effort to genetically dissect this pathway, we have reconstituted it in Bacillus subtilis Successful MP1 production required promoter engineering and the reassembly of essential biosynthetic genes in a modular plasmid. The resulting system allows for rapid pathway manipulation, including protein tagging and gene deletion. We find that 8 processing proteins are sufficient for the production of MP1 and that the tailoring enzyme TclS catalyzes a C-terminal reduction step that distinguishes MP1 from its sister compound micrococcin P2. IMPORTANCE: The emergence of antibiotic resistance is one of the most urgent human health concerns of our day. A crucial component in an integrated strategy for countering antibiotic resistance is the ability to engineer pathways for the biosynthesis of natural and derivatized antimicrobial compounds. In this study, the model organism B. subtilis was employed to reconstitute and genetically modularize a 9-gene system for the biosynthesis of micrococcin, the founding member of a growing family of thiopeptide antibiotics.


Asunto(s)
Bacillus subtilis/metabolismo , Bacteriocinas/biosíntesis , Regulación Bacteriana de la Expresión Génica/fisiología , Bacillus subtilis/genética , Bacteriocinas/química , Bacteriocinas/genética , Regulación Enzimológica de la Expresión Génica , Estructura Molecular , Familia de Multigenes , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Péptidos/química , Péptidos/genética
5.
J Bacteriol ; 196(24): 4344-50, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25313391

RESUMEN

Thiopeptides are small (12- to 17-amino-acid), heavily modified peptides of bacterial origin. This antibiotic family, with more than 100 known members, is characterized by the presence of sulfur-containing heterocyclic rings and dehydrated residues within a macrocyclic peptide structure. Thiopeptides, including micrococcin P1, have garnered significant attention in recent years for their potent antimicrobial activity against bacteria, fungi, and even protozoa. Micrococcin P1 is known to target the ribosome; however, like those of other thiopeptides, its biosynthesis and mechanisms of self-immunity are poorly characterized. We have discovered an isolate of Staphylococcus epidermidis harboring the genes for thiopeptide production and self-protection on a 24-kb plasmid. Here we report the characterization of this plasmid, identify the antimicrobial peptide that it encodes, and provide evidence of a target replacement-mediated mechanism of self-immunity.


Asunto(s)
Bacteriocinas/genética , Familia de Multigenes , Péptidos Cíclicos/genética , Plásmidos , Staphylococcus epidermidis/genética , Antiinfecciosos/farmacología , Bacteriocinas/farmacología , Productos Biológicos/farmacología , Péptidos Cíclicos/farmacología
6.
J Adv Res ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142441

RESUMEN

INTRODUCTION: Endometriosis is a chronic inflammatory disease that affects âˆ¼10 % of women. A significant fraction of patients experience limited or no efficacy with current therapies. Tissue adjacent to endometriosis lesions often exhibits increased neurite and vascular density, suggesting that disease pathology involves neurotrophic activity and angiogenesis. OBJECTIVES: We aim to evaluate the potential for key tyrosine-kinase-receptor-coupled neurotrophic molecules to contribute to endometriosis-associated pain in mice. METHODS: Peritoneal fluid was collected from endometriosis patients undergoing surgery and the levels of NGF and VEGFR1 regulators (VEGFA, VEGFB, PLGF, and sVEGFR1) were quantified by ELISA. VEGFR1 regulator concentrations were used to calculate VEGFR1 occupancy. We used genetic depletion, neutralizing antibodies, and pharmacological approaches to specifically block neurotrophic ligands (NGF or BDNF) or receptors (VEGFR1, TRKs) in a murine model of endometriosis-associated pain. Endometriosis-associated pain was measured using von Frey filaments, quantification of spontaneous abdominal pain-related behavior, and thermal discomfort. Disease parameters were evaluated by lesion size and prevalence. To evaluate potential toxicity, we measured the effect of entrectinib dose and schedule on body weight, liver and kidney function, and bone structure (via micro-CT). RESULTS: We found that entrectinib (pan-Trk inhibitor) or anti-NGF treatments reduced evoked pain, spontaneous pain, and thermal discomfort. In contrast, even though calculated receptor occupancy revealed that VEGFR1 agonist levels are sufficient to support signaling, blocking VEGFR1 via antibody or tamoxifen-induced knockout did not reduce pain or lesion size in mice. Targeting BDNF-TrkB with an anti-BDNF antibody also proved ineffective. Notably, changing dosing schedule to once weekly eliminated entrectinib-induced bone-loss without decreasing efficacy against pain. CONCLUSIONS: This suggests NGF-TrkA signaling, but not BDNF-TrkB or VEGF-VEGFR1, mediates endometriosis-associated pain. Moreover, entrectinib blocks endometriosis-associated pain and reduces lesion sizes. Our results also indicated that entrectinib-like molecules are promising candidates for endometriosis treatment.

7.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961320

RESUMEN

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, we demonstrate complex formation between TclI, TclJ and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core.

8.
J Med Chem ; 62(8): 3958-3970, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-30964669

RESUMEN

We previously showed that a small molecule of natural origin, 1,2,3,4,6-penta- O-galloyl-ß-d-glucopyranose (PGG), binds to capillary morphogenesis gene 2 (CMG2) with a submicromolar IC50 and also has antiangiogenic activity in vitro and in vivo. In this work, we synthetized derivatives of PGG with different sugar cores and phenolic substituents and tested these as angiogenesis inhibitors. In a high-throughput Förster resonant energy transfer-based binding assay, we found that one of our synthetic analogues (1,2,3,4,6-penta- O-galloyl-ß-d-mannopyranose (PGM)), with mannose as central core and galloyl substituents, exhibit higher (up to 10×) affinity for CMG2 than the natural glucose prototype PGG and proved to be a potent angiogenesis inhibitor. These findings demonstrate that biochemical CMG2 binding in vitro predicts inhibition of endothelial cell migration ex vivo and antiangiogenic activity in vivo. The molecules herein described, and in particular PGM, might be useful prototypes for the development of novel agents for angiogenesis-dependent diseases, including blinding eye disease and cancer.


Asunto(s)
Inhibidores de la Angiogénesis/química , Taninos Hidrolizables/química , Receptores de Péptidos/metabolismo , Inhibidores de la Angiogénesis/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Taninos Hidrolizables/metabolismo , Taninos Hidrolizables/farmacología , Manosa/análogos & derivados , Manosa/metabolismo , Manosa/farmacología , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Unión Proteica , Receptores de Péptidos/química , Relación Estructura-Actividad
9.
J Biomol Screen ; 18(3): 269-76, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23015017

RESUMEN

Opioids are widely prescribed analgesics, but their use is limited due to development of tolerance and addiction, as well as high variability in individual response. The development of improved opioid analgesics requires high-throughput functional assays to assess large numbers of potential opioid ligands. In this study, we assessed the ability of a proprietary "no-wash" fluorescent membrane potential dye to act as a reporter of µ-opioid receptor (MOR) activation and desensitization via activation of G-protein-coupled inwardly rectifying potassium channels. AtT-20 cells stably expressing mouse MOR were assayed in 96-well plates using the Molecular Devices FLIPR membrane potential dye. Dye emission intensity decreased upon membrane hyperpolarization. Fluorescence decreased in a concentration-dependent manner upon application of a range of opioid ligands to the cells, with high-efficacy agonists producing a decrease of 35% to 40% in total fluorescence. The maximum effect of morphine faded in the continued presence of agonist, reflecting receptor desensitization. The effects of opioids were prevented by prior treatment with pertussis toxin and blocked by naloxone. We have demonstrated this assay to be an effective method for assessing ligand signaling at MOR, which may potentially be scaled up as an additional high-throughput screening technique for characterizing novel opioid ligands.


Asunto(s)
Analgésicos Opioides/química , Analgésicos Opioides/farmacología , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Animales , Tolerancia a Medicamentos , Fluorescencia , Proteínas de Unión al GTP/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Ligandos , Potenciales de la Membrana/efectos de los fármacos , Ratones , Morfina/farmacología , Naloxona/farmacología , Neuroblastoma/metabolismo , Toxina del Pertussis/farmacología , Canales de Potasio/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA