Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 563(7731): 393-396, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30356212

RESUMEN

Large mammals that live in arid and/or desert environments can cope with seasonal and local variations in rainfall, food and climate1 by moving long distances, often without reliable water or food en route. The capacity of an animal for this long-distance travel is substantially dependent on the rate of energy utilization and thus heat production during locomotion-the cost of transport2-4. The terrestrial cost of transport is much higher than for flying (7.5 times) and swimming (20 times)4. Terrestrial migrants are usually large1-3 with anatomical specializations for economical locomotion5-9, because the cost of transport reduces with increasing size and limb length5-7. Here we used GPS-tracking collars10 with movement and environmental sensors to show that blue wildebeest (Connochaetes taurinus, 220 kg) that live in a hot arid environment in Northern Botswana walked up to 80 km over five days without drinking. They predominantly travelled during the day and locomotion appeared to be unaffected by temperature and humidity, although some behavioural thermoregulation was apparent. We measured power and efficiency of work production (mechanical work and heat production) during cyclic contractions of intact muscle biopsies from the forelimb flexor carpi ulnaris of wildebeest and domestic cows (Bos taurus, 760 kg), a comparable but relatively sedentary ruminant. The energetic costs of isometric contraction (activation and force generation) in wildebeest and cows were similar to published values for smaller mammals. Wildebeest muscle was substantially more efficient (62.6%) than the same muscle from much larger cows (41.8%) and comparable measurements that were obtained from smaller mammals (mouse (34%)11 and rabbit (27%)). We used the direct energetic measurements on intact muscle fibres to model the contribution of high working efficiency of wildebeest muscle to minimizing thermoregulatory challenges during their long migrations under hot arid conditions.


Asunto(s)
Antílopes/fisiología , Regulación de la Temperatura Corporal/fisiología , Clima Desértico , Metabolismo Energético/fisiología , Calor , Locomoción/fisiología , Músculo Esquelético/fisiología , Aclimatación/fisiología , Sistemas de Identificación Animal , Migración Animal/fisiología , Animales , Antílopes/anatomía & histología , Tamaño Corporal , Botswana , Bovinos , Ingestión de Líquidos , Femenino , Sistemas de Información Geográfica , Humedad , Contracción Isométrica , Ratones , Conejos , Conducta Sedentaria , Agua/análisis
2.
Nature ; 554(7691): 183-188, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29364874

RESUMEN

The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.


Asunto(s)
Acinonyx/psicología , Equidae/fisiología , Leones/fisiología , Conducta Predatoria/fisiología , Rumiantes/fisiología , Aceleración , Animales , Botswana , Femenino , Masculino , Músculo Esquelético/fisiología , Carrera/fisiología
3.
J Exp Biol ; 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34005718

RESUMEN

Animals need to navigate between resources such as water, food and shelter and how they achieve this is likely to vary with species. Here, using high accuracy GPS data, we study repeated journeys made by wild zebra (Equus quagga) through a naturally vegetated environment to explore whether they consistently follow the same route through the area or whether they use a range of routes to reach their goal. We use a model to distinguish and quantify these two possibilities and show that our observations are consistent with the use of multiple routes. Our model performs better than assuming uniform angular distribution of trajectories. The typical separation of the routes was found to be small (1.96 m), while the scale at which neighboring trajectories are informative to direction of travel was found to be large (with a confidence interval of (1.19, 26.4) m). Our observations are consistent with the hypothesis that zebra are able to navigate without having to return to previously used routes, instead using numerous different routes of similar trajectories.

4.
J Exp Biol ; 223(Pt 23)2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33109714

RESUMEN

Animals need to navigate between resources such as water, food and shelter, and how they achieve this is likely to vary with species. Here, using high-accuracy GPS data, we studied repeated journeys made by wild plains zebra (Equus quagga) through a naturally vegetated environment to explore whether they consistently follow the same route through the area or whether they use a range of routes to reach their goal. We used a model to distinguish and quantify these two possibilities and show that our observations are consistent with the use of multiple routes. Our model performs better than assuming a uniform angular distribution of trajectories. The typical separation of the routes was found to be small (1.96 m), while the scale at which neighbouring trajectories are informative to direction of travel was found to be large (with a confidence interval of 1.19-26.4 m). Our observations are consistent with the hypothesis that zebra are able to navigate without having to return to previously used routes, instead using numerous different routes of similar trajectories.


Asunto(s)
Equidae , Animales
5.
Trends Ecol Evol ; 39(2): 125-127, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38185582

RESUMEN

Photographic images taken by tourists and uploaded to the African Carnivore Wildbook have been used by Cozzi et al. to identify individual African wild dogs and study their dispersal behavior. Collaborations among citizen scientists, computer scientists, and researchers can expand the reach of conservation efforts spatially and temporally.


Asunto(s)
Carnívoros , Ecosistema , Animales , Conducta Predatoria
6.
Ecol Evol ; 14(6): e11529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840587

RESUMEN

Most herbivores must balance demands to meet nutritional requirements, maintain stable thermoregulation and avoid predation. Species-specific predator and prey characteristics determine the ability of prey to avoid predation and the ability of predators to maximize hunting success. Using GPS collar data from African wild dogs, lions, impala, tsessebes, wildebeest and zebra in the Okavango Delta, Botswana, we studied proactive predation risk avoidance by herbivores. We considered predator activity level in relation to prey movement, predator and prey habitat selection, and preferential use of areas by prey. We compared herbivore behaviour to lion and wild dog activity patterns and determined the effect of seasonal resource availability and prey body mass on anti-predator behaviour. Herbivore movement patterns were more strongly correlated with lion than wild dog activity. Habitat selection by predators was not activity level dependent and, while prey and predators differed to some extent in their habitat selection, there were also overlaps, probably caused by predators seeking habitats with high prey abundance. Areas favoured by lions were used by herbivores more when lions were less active, whereas wild dog activity level was not correlated with prey use. Prey body mass was not a strong predictor of the strength of proactive predation avoidance behaviour. Herbivores showed stronger anti-predator behaviours during the rainy season when resources were abundant. Reducing movement when top predators are most active and avoiding areas with a high likelihood of predator use during the same periods appear to be common strategies to minimize predation risk. Such valuable insights into predator-prey dynamics are only possible when using similar data from multiple sympatric species of predator and prey, an approach that should become more prevalent given the ongoing integration of technological methods into ecological studies.

7.
Sci Data ; 11(1): 191, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346970

RESUMEN

Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species' population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate 'intactness scores': the remaining proportion of an 'intact' reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region's major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Mamíferos , Vertebrados , Plantas , África
8.
PLoS One ; 14(3): e0213720, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30861044

RESUMEN

Sympatric herbivores experience similar environmental conditions but can vary in their population trends. Identifying factors causing these differences could assist conservation efforts aimed at maintaining fully functional ecosystems. From 1996-2013, tsessebe and wildebeest populations in the Okavango Delta, Botswana, declined by 73% and 90%, respectively, whereas zebra populations remained stable. These sympatric, medium sized herbivores are exposed to similar natural and anthropogenic pressures, but apparently differ in their responses to those pressures. To identify factors that could cause these differences, we fitted GPS-enabled collars to six zebra, eight tsessebe and seven wildebeest in the Moremi Game Reserve, Botswana. We calculated utilisation distributions (UDs) from GPS data, and used 95% isopleths to compare seasonal home range size between species. We calculated utilisation intensity (UI) from the UDs and generated spatial layers representing resources and disturbances, and then used model averaging to identify factors affecting UI for each species. We calculated second and third order habitat selection ratios to determine whether species were habitat specialists or generalists. Zebra occupied larger home ranges than tsessebe and wildebeest, showed weaker responses to spatial variables and displayed no third order habitat selection; zebra social systems are also more fluid, allowing for information exchange between stable harems. Herbivore species that are sedentary, occupy small home ranges, are habitat specialists and exist in relatively isolated groups are likely to be less resistant and resilient to the rapid pace of environmental change forecast by climate change scenarios. Resources contained within existing protected areas are unlikely to maintain populations of such species at sufficiently high levels, potentially leading to functional extinction. Special precautions may be needed to ensure that such species can persist in the wild, such as buffer zones around existing protected areas, which would allow greater potential for adaptive movement should current environmental conditions change.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Equidae/fisiología , Herbivoria , Fenómenos de Retorno al Lugar Habitual/fisiología , Rumiantes/fisiología , África , Animales , Antílopes/fisiología , Biodiversidad , Botswana , Femenino , Sistemas de Información Geográfica , Geografía , Masculino , Dinámica Poblacional , Simpatría
9.
Sci Rep ; 9(1): 2142, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765800

RESUMEN

Unmanned Aerial Systems (UAS) are increasingly being used recreationally, commercially and for wildlife research, but very few studies have quantified terrestrial mammalian reactions to UAS approaches. We used two Vertical Take-off and Landing (VTOL) UAS to approach seven herbivore species in the Moremi Game Reserve, Botswana, after securing the relevant permissions. We recorded responses to 103 vertical and 120 horizontal approaches, the latter from three altitudes above ground level (AGL). We ran mixed logistic regressions to identify factors triggering (i) any response and (ii) an evasive response. We included effects of activity, altitude, direction of approach, distance, habitat, herd type, herd size, other species, target species, time, VTOL type and wind strength. Response triggers were linked to altitude, distance, habitat and target species. Elephant (Loxodonta africana), giraffe (Giraffa camelopardalis), wildebeest (Connochaetes taurinus) and zebra (Equus quagga) were most affected by VTOL approach, impala (Aepyceros melampus) and lechwe (Kobus leche) were least responsive, and tsessebe (Damaliscus lunatus) displayed intermediate sensitivity. VTOLs flown lower than 60 m AGL and closer than 100 m horizontal distance from target animals triggered behavioural responses in most species. Enforced regulations on recreational UAS use in wildlife areas are necessary to minimise disturbance to terrestrial mammals.


Asunto(s)
Aeronaves , Animales Salvajes/fisiología , Conducta Animal , Ecosistema , Mamíferos/fisiología , Tecnología de Sensores Remotos/métodos , Animales , Femenino , Masculino
10.
PLoS One ; 11(1): e0146782, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26771548

RESUMEN

Bats frequently roost in historic churches, and these colonies are of considerable conservation value. Inside churches, bat droppings and urine can cause damage to the historic fabric of the building and to items of cultural significance. In extreme cases, large quantities of droppings can restrict the use of a church for worship and/or other community functions. In the United Kingdom, bats and their roosts are protected by law, and striking a balance between conserving the natural and cultural heritage can be a significant challenge. We investigated mitigation strategies that could be employed in churches and other historic buildings to alleviate problems caused by bats without adversely affecting their welfare or conservation status. We used a combination of artificial roost provision and deterrence at churches in Norfolk, England, where significant maternity colonies of Natterer's bats Myotis nattereri damage church features. Radio-tracking data and population modelling showed that excluding M. nattereri from churches is likely to have a negative impact on their welfare and conservation status, but that judicious use of deterrents, especially high intensity ultrasound, can mitigate problems caused by bats. We show that deterrence can be used to move bats humanely from specific roosting sites within a church and limit the spread of droppings and urine so that problems to congregations and damage to cultural heritage can be much reduced. In addition, construction of bespoke roost spaces within churches can allow bats to continue to roost within the fabric of the building without flying in the church interior. We highlight that deterrence has the potential to cause serious harm to M. nattereri populations if not used judiciously, and so the effects of deterrents will need careful monitoring, and their use needs strict regulation.


Asunto(s)
Quirópteros/fisiología , Control de Plagas , Animales , Arquitectura , Conducta Animal/fisiología , Vivienda para Animales , Reino Unido
12.
PLoS One ; 10(12): e0145145, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26673623

RESUMEN

Studies of habitat use by animals must consider behavioural resource requirements at different scales, which could influence the functional value of different sites. Using Cape buffalo (Syncerus caffer caffer) in the Okavango Delta, Botswana, we tested the hypotheses that behaviour affected use between and within habitats, hereafter referred to as macro- and microhabitats, respectively. We fitted GPS-enabled collars to fifteen buffalo and used the distances and turning angles between consecutive fixes to cluster the resulting data into resting, grazing, walking and relocating behaviours. Distance to water and six vegetation characteristic variables were recorded in sites used for each behaviour, except for relocating, which occurred too infrequently. We used multilevel binomial and multinomial logistic regressions to identify variables that characterised seasonally-preferred macrohabitats and microhabitats used for different behaviours. Our results showed that macrohabitat use was linked to behaviour, although this was least apparent during the rainy season, when resources were most abundant. Behaviour-related microhabitat use was less significant, but variation in forage characteristics could predict some behaviour within all macrohabitats. The variables predicting behaviour were not consistent, but resting and grazing sites were more readily identifiable than walking sites. These results highlight the significance of resting, as well as foraging, site availability in buffalo spatial processes. Our results emphasise the importance of considering several behaviours and scales in studies of habitat use to understand the links between environmental resources and animal behavioural and spatial ecology.


Asunto(s)
Distribución Animal , Búfalos/fisiología , Ecosistema , Herbivoria , Animales , Botswana , Tecnología de Sensores Remotos
13.
PLoS One ; 9(7): e101346, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24983377

RESUMEN

Seasonal fluctuations in water availability cause predictable changes in the profitability of habitats in tropical ecosystems, and animals evolve adaptive behavioural and spatial responses to these fluctuations. However, stochastic changes in the distribution and abundance of surface water between years can alter resource availability at a landscape scale, causing shifts in animal behaviour. In the Okavango Delta, Botswana, a flood-pulsed ecosystem, the volume of water entering the system doubled between 2008 and 2009, creating a sudden change in the landscape. We used African buffalo (Syncerus caffer) to test the hypotheses that seasonal habitat selection would be related to water availability, that increased floodwater levels would decrease forage abundance and affect habitat selection, and that this would decrease buffalo resting time, reduce reproductive success and decrease body condition. Buffalo selected contrasting seasonal habitats, using habitats far from permanent water during the rainy season and seasonally-flooded habitats close to permanent water during the early and late flood seasons. The 2009 water increase reduced forage availability in seasonally-flooded habitats, removing a resource buffer used by the buffalo during the late flood season, when resources were most limited. In response, buffalo used drier habitats in 2009, although there was no significant change in the time spent moving or resting, or daily distance moved. While their reproductive success decreased in 2009, body condition increased. A protracted period of high water levels could prove detrimental to herbivores, especially to smaller-bodied species that require high quality forage. Stochastic annual fluctuations in water levels, predicted to increase as a result of anthropogenically-induced climate change, are likely to have substantial impacts on the functioning of water-driven tropical ecosystems, affecting environmental conditions within protected areas. Buffer zones around critical seasonal resources are essential to allow animals to engage in compensatory behavioural and spatial mechanisms in response to changing environmental conditions.


Asunto(s)
Conducta Animal/fisiología , Búfalos/fisiología , Ecosistema , Inundaciones , Estaciones del Año , Agua , Animales , Botswana , Cambio Climático , Sequías , Lluvia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA