Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Microbiol ; 7(4): 590-599, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35365791

RESUMEN

Experimental mouse models are central to basic biomedical research; however, variability exists across genetically identical mice and mouse facilities making comparisons difficult. Whether specific indigenous gut bacteria drive immunophenotypic variability in mouse models of human disease remains poorly understood. We performed a large-scale experiment using 579 genetically identical laboratory mice from a single animal facility, designed to identify the causes of disease variability in the widely used dextran sulphate sodium mouse model of inflammatory bowel disease. Commonly used treatment endpoint measures-weight loss and intestinal pathology-showed limited correlation and varied across mouse lineages. Analysis of the gut microbiome, coupled with machine learning and targeted anaerobic culturing, identified and isolated two previously undescribed species, Duncaniella muricolitica and Alistipes okayasuensis, and demonstrated that they exert dominant effects in the dextran sulphate sodium model leading to variable treatment endpoint measures. We show that the identified gut microbial species are common, but not ubiquitous, in mouse facilities around the world, and suggest that researchers monitor for these species to provide experimental design opportunities for improved mouse models of human intestinal diseases.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Bacteroidetes , Colitis/inducido químicamente , Colitis/microbiología , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/microbiología , Ratones
2.
Cell Host Microbe ; 30(1): 124-138.e8, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34971560

RESUMEN

Human health and disease have increasingly been shown to be impacted by the gut microbiota, and mouse models are essential for investigating these effects. However, the compositions of human and mouse gut microbiotas are distinct, limiting translation of microbiota research between these hosts. To address this, we constructed the Mouse Gastrointestinal Bacteria Catalogue (MGBC), a repository of 26,640 high-quality mouse microbiota-derived bacterial genomes. This catalog enables species-level analyses for mapping functions of interest and identifying functionally equivalent taxa between the microbiotas of humans and mice. We have complemented this with a publicly deposited collection of 223 bacterial isolates, including 62 previously uncultured species, to facilitate experimental investigation of individual commensal bacteria functions in vitro and in vivo. Together, these resources provide the ability to identify and test functionally equivalent members of the host-specific gut microbiotas of humans and mice and support the informed use of mouse models in human microbiota research.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/fisiología , Animales , Bacterias/genética , Bacterias/metabolismo , Butiratos/metabolismo , Genoma Bacteriano , Humanos , Metagenoma/genética , Ratones , Modelos Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA