Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biophys J ; 99(11): 3773-81, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21112302

RESUMEN

Fungi and bacteria secrete glycoprotein cocktails to deconstruct cellulose. Cellulose-degrading enzymes (cellulases) are often modular, with catalytic domains for cellulose hydrolysis and carbohydrate-binding modules connected by linkers rich in serine and threonine with O-glycosylation. Few studies have probed the role that the linker and O-glycans play in catalysis. Since different expression and growth conditions produce different glycosylation patterns that affect enzyme activity, the structure-function relationships that glycosylation imparts to linkers are relevant for understanding cellulase mechanisms. Here, the linker of the Trichoderma reesei Family 7 cellobiohydrolase (Cel7A) is examined by simulation. Our results suggest that the Cel7A linker is an intrinsically disordered protein with and without glycosylation. Contrary to the predominant view, the O-glycosylation does not change the stiffness of the linker, as measured by the relative fluctuations in the end-to-end distance; rather, it provides a 16 Å extension, thus expanding the operating range of Cel7A. We explain observations from previous biochemical experiments in the light of results obtained here, and compare the Cel7A linker with linkers from other cellulases with sequence-based tools to predict disorder. This preliminary screen indicates that linkers from Family 7 enzymes from other genera and other cellulases within T. reesei may not be as disordered, warranting further study.


Asunto(s)
Celulasa/química , Celulasa/metabolismo , Trichoderma/enzimología , Secuencia de Aminoácidos , Glicosilación , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Termodinámica
2.
J Phys Chem B ; 112(9): 2590-5, 2008 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-18266351

RESUMEN

Solid-state nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy has often been used to study cellulose structure, but some features of the cellulose NMR spectrum are not yet fully understood. One such feature is a doublet around 84 ppm, a signal that has been proposed to originate from C4 atoms at cellulose fibril surfaces. The two peaks yield different T1, differing by approximately a factor of 2 at 75 MHz. In this study, we calculate T1 from C4-H4 vector dynamics obtained from molecular dynamics computer simulations of cellulose I beta-water interfacial systems. Calculated and experimentally obtained T1 values for C4 atoms in surface chains fell within the same order of magnitude, 3-20 s. This means that the applied force field reproduces relevant surface dynamics for the cellulose-water interface sufficiently well. Furthermore, a difference in T1 of about a factor of 2 in the range of Larmor frequencies 25-150 MHz was found for C4 atoms in chains located on top of two different crystallographic planes, namely, (110) and (10). A previously proposed explanation that the C4 peak doublet could derive from surfaces parallel to different crystallographic planes is herewith strengthened by computationally obtained evidence. Another suggested basis for this difference is that the doublet originates from C4 atoms located in surface anhydro-glucose units with hydroxymethyl groups pointing either inward or outward. This was also tested within this study but was found to yield no difference in calculated T1.


Asunto(s)
Celulosa/química , Simulación por Computador , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Agua/química , Algoritmos , Carbono/química , Rotación , Propiedades de Superficie
3.
J Phys Chem B ; 111(30): 9138-45, 2007 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-17628097

RESUMEN

The influence of temperature on structure and properties of the cellulose Ibeta crystal was studied by molecular dynamics simulations with the GROMOS 45a4 force-field. At 300 K, the modeled crystal agreed reasonably with several sets of experimental data, including crystal density, corresponding packing and crystal unit cell dimensions, chain conformation parameters, hydrogen bonds, Young's modulus, and thermal expansion coefficient at room temperature. At high-temperature (500 K), the cellulose chains remained in sheets, despite differences in the fine details compared to the room-temperature structure. The density decreased while the a and b cell parameters expanded by 7.4% and 6%, respectively, and the c parameter (chain axis) slightly contracted by 0.5%. Cell angles alpha and beta divided into two populations. The hydroxymethyl groups mainly adopted the gt orientation, and the hydrogen-bonding pattern thereby changed. One intrachain hydrogen bond, O2'H2'...O6, disappeared and consequently the Young's modulus decreased by 25%. A transition pathway between the low- and high-temperature structures has been proposed, with an initial step being an increased intersheet separation, which allowed every second cellulose chain to rotate around its helix axis by about 30 degrees . Second, all hydroxymethyl groups changed their orientations, from tg to gg (rotated chains) and from tg to gt (non-rotated chains). When temperature was further increased, the rotated chains returned to their original orientation and their hydroxymethyl groups again changed their conformation, from gg to gt. A transition temperature of about 450 K was suggested; however, the transition seems to be more gradual than sudden. The simulated data on temperature-induced changes in crystal unit cell dimensions and the hydrogen-bonding pattern also compared well with experimental results.


Asunto(s)
Celulosa/química , Secuencia de Carbohidratos , Celobiosa/química , Simulación por Computador , Cristalización , Calor , Modelos Biológicos , Datos de Secuencia Molecular , Temperatura
4.
J Phys Chem B ; 115(10): 2155-66, 2011 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21338135

RESUMEN

We use molecular simulation to elucidate the structural behavior of small hydrated cellulose Iß microfibrils heated to 227 °C (500 K) with two carbohydrate force fields. In contrast to the characteristic two-dimensional hydrogen-bonded layer sheets present in the cellulose Iß crystal structure, we show that at high temperature a three-dimensional hydrogen bond network forms, made possible by hydroxymethyl groups changing conformation from trans-gauche (TG) to gauche-gauche (GG) in every second layer corresponding to "center" chains in cellulose Iß and from TG to gauche-trans (GT) in the "origin" layer. The presence of a regular three-dimensional hydrogen bond network between neighboring sheets eliminates the possibility of twist, whereas two-dimensional hydrogen bonding allows for microfibril twist to occur. Structural features of this high-temperature phase as determined by molecular simulation may explain several experimental observations for which no detailed structural basis has been offered. This includes an explanation for the observed temperature and crystal size dependence for the extent of hydrogen/deuterium exchange, and diffraction patterns of cellulose at high temperature.


Asunto(s)
Celulosa/química , Calor , Simulación de Dinámica Molecular , Conformación de Carbohidratos
5.
Carbohydr Res ; 345(14): 2060-6, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20705283

RESUMEN

Molecular dynamics simulations have been used to calculate the potentials of mean force for separating short cellooligomers in aqueous solution as a means of estimating the contributions of hydrophobic stacking and hydrogen bonding to the insolubility of crystalline cellulose. A series of four potential of mean force (pmf) calculations for glucose, cellobiose, cellotriose, and cellotetraose in aqueous solution were performed for situations in which the molecules were initially placed with their hydrophobic faces stacked against one another, and another for the cases where the molecules were initially placed adjacent to one another in a co-planar, hydrogen-bonded arrangement, as they would be in cellulose Ibeta. From these calculations, it was found that hydrophobic association does indeed favor a crystal-like structure over solution, as might be expected. Somewhat more surprisingly, hydrogen bonding also favored the crystal packing, possibly in part because of the high entropic cost for hydrating glucose hydroxyl groups, which significantly restricts the configurational freedom of the hydrogen-bonded waters. The crystal was also favored by the observation that there was no increase in chain configurational entropy upon dissolution, because the free chain adopts only one conformation, as previously observed, but against intuitive expectations, apparently due to the persistence of the intramolecular O3-O5 hydrogen bond.


Asunto(s)
Celulosa/química , Simulación de Dinámica Molecular , Conformación de Carbohidratos , Cristalización , Entropía , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Solubilidad , Soluciones
6.
Langmuir ; 25(8): 4635-42, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19231815

RESUMEN

Pulling single cellulose molecules from a crystalline cellulose surface has been modeled by molecular dynamics (MD) simulations of the experimental procedure used in atomic force microscopy (AFM). Specifically, the aim of the study was to investigate cellulose interactions at desorption. Simulations were performed in both water and the organic solvent cyclohexane. Moreover, the effects of initial octamer conformation and orientation with respect to the surface chains were studied. A strong effect from the solvent was observed. In cyclohexane, normal forces of 200-500 pN and energies of 43.5+/-6.0 kJ/mol glucose unit were required to pull off the octamer. The normal forces in water were substantially lower, around 58 pN, and the energies were 18.2+/-3.6 kJ/mol glucose unit. In addition, the lateral components of the pull-off force were shown to provide information on initial conformation and orientation. Hydrogen bonds between the octamer and surface were analyzed and found to be an important factor in the pull-off behavior. Altogether, it was shown that MD provides detailed information on the desorption processes that may be useful for the interpretation of AFM experiments.


Asunto(s)
Celobiosa/química , Celulosa/química , Simulación por Computador , Cristalización , Ciclohexanos/química , Glucosa/química , Enlace de Hidrógeno , Microscopía de Fuerza Atómica/métodos , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Solventes/química , Estrés Mecánico , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA