Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 33(9): 5426-5435, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36408641

RESUMEN

Within the first years of life, children learn major aspects of their native language. However, the ability to process complex sentence structures, a core faculty in human language called syntax, emerges only slowly. A milestone in syntax acquisition is reached around the age of 4 years, when children learn a variety of syntactic concepts. Here, we ask which maturational changes in the child's brain underlie the emergence of syntactically complex sentence processing around this critical age. We relate markers of cortical brain maturation to 3- and 4-year-olds' sentence processing in contrast to other language abilities. Our results show that distinct cortical brain areas support sentence processing in the two age groups. Sentence production abilities at 3 years were associated with increased surface area in the most posterior part of the left superior temporal sulcus, whereas 4-year-olds showed an association with cortical thickness in the left posterior part of Broca's area, i.e. BA44. The present findings suggest that sentence processing abilities rely on the maturation of distinct cortical regions in 3- compared to 4-year-olds. The observed shift to more mature regions involved in processing syntactically complex sentences may underlie behavioral milestones in syntax acquisition at around 4 years.


Asunto(s)
Lenguaje , Imagen por Resonancia Magnética , Humanos , Niño , Preescolar , Área de Broca , Encéfalo , Lóbulo Temporal , Mapeo Encefálico , Comprensión
2.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810259

RESUMEN

G protein-coupled receptors (GPCRs) are one of the most important drug-target classes in pharmaceutical industry. Their diversity in signaling, which can be modulated with drugs, permits the design of more effective and better-tolerated therapeutics. In this work, we have used rigid oligoproline backbones to generate bivalent ligands for the gastrin-releasing peptide receptor (GRPR) with a fixed distance between their recognition motifs. This allows the stabilization of GPCR dimers irrespective of their physiological occurrence and relevance, thus expanding the space for medicinal chemistry. Specifically, we observed that compounds presenting agonists or antagonists at 20- and 30-Å distance induce GRPR dimerization. Furthermore, we found that 1) compounds with two agonists at 20- and 30-Å distance that induce dimer formation show bias toward Gq efficacy, 2) dimers with 20- and 30-Å distance have different potencies toward ß-arrestin-1 and ß-arrestin-2, and 3) the divalent agonistic ligand with 10-Å distance specifically reduces Gq potency without affecting ß-arrestin recruitment, pointing toward an allosteric effect. In summary, we show that rigid oligoproline backbones represent a tool to develop ligands with biased GPCR signaling.


Asunto(s)
Prolina/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Sitio Alostérico , Secuencias de Aminoácidos , Clonación Molecular , Dimerización , Células HEK293 , Humanos , Cinética , Ligandos , Péptidos/química , Ingeniería de Proteínas/métodos , Transducción de Señal , beta-Arrestinas/metabolismo
3.
J Allergy Clin Immunol ; 152(1): 230-243, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36822481

RESUMEN

BACKGROUND: Familial Mediterranean fever (FMF), caused by mutations in the pyrin-encoding MEFV gene, is characterized by uncontrolled caspase-1 activation and IL-1ß secretion. A similar mechanism drives inflammation in cryopyrin-associated periodic fever syndrome (CAPS) caused by mutations in NLRP3. CAPS and FMF, however, result in largely different clinical manifestations, pointing to additional, autoinflammatory pathways involved in FMF. Another hallmark of FMF is extraordinarily high expression of S100A8 and S100A9. These alarmins are ligands of Toll-like receptor 4 and amplifiers of inflammation. However, the relevance of this inflammatory pathway for the pathogenesis of FMF is unknown. OBJECTIVE: This study investigated whether mutations in pyrin result in specific secretion of S100A8/A9 alarmins through gasdermin D pores' amplifying FMF pathology. METHODS: S100A8/A9 levels in FMF patients were quantified by enzyme-linked immunosorbent assay. In vitro models with knockout cell lines and specific protein inhibitors were used to unravel the S100A8/A9 secretion mechanism. The impact of S100A8/A9 to the pathophysiology of FMF was analyzed with FMF (MEFVV726A/V726A) and S100A9-/- mouse models. Pyrin-S100A8/A9 interaction was investigated by coimmunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay studies. RESULTS: The S100A8/A9 complexes directly interacted with pyrin. Knocking out pyrin, caspase-1, or gasdermin D inhibited the secretion of these S100 alarmins. Inflammatory S100A8/A9 dimers were inactivated by tetramer formation. Blocking this inactivation by targeted S100A9 deletion in a murine FMF model demonstrated the relevance of this novel autoinflammatory pathway in FMF. CONCLUSION: This is the first proof that members of the S100 alarmin family are released in a pyrin/caspase-1/gasdermin D-dependent pathway and directly drive autoinflammation in vivo.


Asunto(s)
Síndromes Periódicos Asociados a Criopirina , Fiebre Mediterránea Familiar , Animales , Ratones , Alarminas , Calgranulina A/genética , Caspasas/metabolismo , Síndromes Periódicos Asociados a Criopirina/genética , Fiebre Mediterránea Familiar/genética , Gasderminas , Inflamación , Pirina/genética
4.
J Neurosci ; 42(32): 6258-6266, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35817578

RESUMEN

Goal-directed behavior crucially relies on our capacity to suppress impulses and predominant behavioral responses. This ability, called inhibitory control, emerges in early childhood with marked improvements between 3 and 4 years. Here, we ask which brain structures are related to the emergence of this critical ability. Using a multimodal approach, we relate the pronounced behavioral improvements in different facets of 3- and 4-year-olds' (N = 37, 20 female) inhibitory control to structural indices of maturation in the developing brain assessed with MRI. Our results show that cortical and subcortical structure of core regions in the adult cognitive control network, including the PFC, thalamus, and the inferior parietal cortices, is associated with early inhibitory functioning in preschool children. Probabilistic tractography revealed an association of frontoparietal (i.e., the superior longitudinal fascicle) and thalamocortical connections with early inhibitory control. Notably, these associations to brain structure were distinct for different facets of early inhibitory control, often referred to as motivational ("hot") and cognitive ("cold") inhibitory control. Our findings thus reveal the structural brain networks and connectivity related to the emergence of this core faculty of human cognition.SIGNIFICANCE STATEMENT The capacity to suppress impulses and behavioral responses is crucial for goal-directed behavior. This ability, called inhibitory control, develops between the ages of 3 and 4 years. The factors behind this developmental milestone have been debated intensely for decades; however, the brain structure that underlies the emergence of inhibitory control in early childhood is largely unknown. Here, we relate the pronounced behavioral improvements in inhibitory control between 3 and 4 years with structural brain markers of gray matter and white matter maturation. Using a multimodal approach that combines analyses of cortical surface structure, subcortical structures, and white matter connectivity, our results reveal the structural brain networks and connectivity related to this core faculty of human cognition.


Asunto(s)
Sustancia Blanca , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Preescolar , Cognición/fisiología , Femenino , Sustancia Gris , Humanos , Imagen por Resonancia Magnética , Lóbulo Parietal/fisiología , Sustancia Blanca/fisiología
5.
EMBO Rep ; 22(2): e50218, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369848

RESUMEN

Cell signalling governs cellular behaviour and is therefore subject to tight spatiotemporal regulation. Signalling output is modulated by specialized cell membranes and vesicles which contain unique combinations of lipids and proteins. The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ), an important component of the plasma membrane as well as other subcellular membranes, is involved in multiple processes, including signalling. However, which enzymes control the turnover of non-plasma membrane PI(4,5)P2 , and their impact on cell signalling and function at the organismal level are unknown. Here, we identify Paladin as a vascular PI(4,5)P2 phosphatase regulating VEGFR2 endosomal signalling and angiogenesis. Paladin is localized to endosomal and Golgi compartments and interacts with vascular endothelial growth factor receptor 2 (VEGFR2) in vitro and in vivo. Loss of Paladin results in increased internalization of VEGFR2, over-activation of extracellular regulated kinase 1/2, and hypersprouting of endothelial cells in the developing retina of mice. These findings suggest that inhibition of Paladin, or other endosomal PI(4,5)P2 phosphatases, could be exploited to modulate VEGFR2 signalling and angiogenesis, when direct and full inhibition of the receptor is undesirable.


Asunto(s)
Neovascularización Fisiológica , Fosfoinosítido Fosfatasas , Fosfoproteínas Fosfatasas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Células Endoteliales/metabolismo , Ratones , Fosfatidilinositol 4,5-Difosfato , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
Dev Sci ; 25(1): e13141, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34224185

RESUMEN

Impairments in inhibitory control (IC) are traditionally seen as a vital aspect in the emergence and course of maladaptive behavior across early childhood. However, it is currently unclear whether this view applies to both the externalizing and internalizing domain of parent-reported behavioral adjustment. Furthermore, past (meta-analytic) developmental research and theory characterizing this association have largely neglected the vast heterogeneity of IC measures and conceptualizations. The present meta-analyses examined the association of IC with parent-reported externalizing (N = 3160, 21 studies) and internalizing (N = 1758, 12 studies) behavior problems, assessed with the Child Behavior Checklist (CBCL), in non-clinical populations of children aged 2-8 years. They further investigated the moderating effects of a priori IC categorization, according to a recently proposed two-factor model of IC ("Strength/Endurance" account, Simpson & Carroll, 2019). In line with previous research in the clinical domain, the current results corroborate the notion of a robust, but small association between IC and externalizing behavior problems (r = -0.11) in early childhood. However, although frequently proposed in the literature, no significant linear association could be identified with internalizing behavior problems. Furthermore, in both meta-analyses, no significant moderating effects of IC categorization could be revealed. These findings enhance our knowledge about the cognitive underpinnings of early-emerging maladaptive behavior, indicating that different subtypes of IC are statistically related with externalizing, but not internalizing behavior problems. Overall, the small association of IC ability with behavior problems in non-clinical populations provokes broader questions about the role of IC in behavioral adjustment.


Asunto(s)
Problema de Conducta , Niño , Preescolar , Humanos , Padres , Problema de Conducta/psicología
7.
Dev Sci ; 25(5): e13199, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34821447

RESUMEN

The rapid detection and resolution of conflict between opposing action tendencies is crucial for our ability to engage in goal-directed behavior. Research in adults suggests that emotions can serve as a "relevance detector" that alarms attentional and sensory systems, thereby leading to more efficient conflict processing. In contrast, previous research in children has almost exclusively stressed the impeding influence of emotion on the attentional system, as suggested by the protracted development of performance in "hot" executive function tasks. Do preschool children show a facilitative effect of emotion on conflict processing? We addressed this question applying a modified version of a color flanker task that either involved or did not involve positive emotional stimuli in preschool children (N = 43, with preregistered Bayesian sequential design, aged 2.8-7.0 years). Our results show a robust conflict effect with higher error rates in incongruent compared to congruent trials. Crucially, conflict resolution was faster in emotional compared to neutral conditions. Furthermore, while efficient conflict processing increases with age, we find evidence against an age-related change in the influence of positive emotion on conflict processing. Taken together, these findings provide indication that positive emotion can trigger efficient control processes already from early on in life. In contrast to the predominant view in developmental psychology, this indicates that, depending on the role that emotion has in conflict processing, emotion may show a facilitative or impeding effect already in the preschool period.


Asunto(s)
Conflicto Psicológico , Potenciales Evocados , Adulto , Teorema de Bayes , Preescolar , Emociones , Humanos , Estimulación Luminosa/métodos , Tiempo de Reacción
8.
Bioconjug Chem ; 31(10): 2431-2438, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33047605

RESUMEN

Tumor targeting with bivalent radiolabeled ligands for GPCRs is an attractive means for cancer imaging and therapy. Here, we studied and compared the distance dependence of homobivalent ligands for the human gastrin-releasing peptide receptor (hGRP-R) and the somatostatin receptor subtype II (hSstR2a). Oligoprolines were utilized as molecular scaffolds to enable distances of 10, 20, or 30 Å between two identical, agonistic recognition motifs. In vitro internalization assays revealed that ligands with a distance of 20 Å between the recognition motifs exhibit the highest cellular uptake in both ligand series. Structural modeling and molecular dynamics simulations support an optimal distance of 20 Å for accommodating ligand binding to both binding sites of a GPCR dimer. Translation of these findings to the significantly higher complexity in vivo proved difficult and showed only for the hGRP-R increased tumor uptake of the bivalent ligand.


Asunto(s)
Oligopéptidos/química , Oligopéptidos/farmacocinética , Prolina/análogos & derivados , Prolina/farmacocinética , Receptores de Bombesina/agonistas , Receptores de Somatostatina/agonistas , Animales , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Ligandos , Ratones SCID , Simulación de Dinámica Molecular , Neoplasias/metabolismo , Oligopéptidos/farmacología , Prolina/farmacología , Receptores de Bombesina/metabolismo , Receptores de Somatostatina/metabolismo
9.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668755

RESUMEN

G protein-coupled receptors (GPCRs) are cellular master regulators that translate extracellular stimuli such as light, small molecules or peptides into a cellular response. Upon ligand binding, they bind intracellular proteins such as G proteins or arrestins, modulating intracellular signaling cascades. Here, we use a protein-fragment complementation approach based on nanoluciferase (split luciferase assay) to assess interaction of all four known human arrestins with four different GPCRs (two class A and two class B receptors) in live cells. Besides directly tagging the 11S split-luciferase subunit to the receptor, we also could demonstrate that membrane localization of the 11S subunit with a CAAX-tag allowed us to probe arrestin recruitment by endogenously expressed GPCRs. Varying the expression levels of our reporter constructs changed the dynamic behavior of our assay, which we addressed with an advanced baculovirus-based multigene expression system. Our detection assay allowed us to probe the relevance of each of the two arrestin binding sites in the different GPCRs for arrestin binding. We observed remarkable differences between the roles of each arresting binding site in the tested GPCRs and propose that the distinct advantages of our system for probing receptor interaction with effector proteins will help elucidate the molecular basis of GPCR signaling efficacy and specificity in different cell types.


Asunto(s)
Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transferencia de Energía por Resonancia de Bioluminiscencia , Dominio Catalítico , Dosificación de Gen , Genes Reporteros , Células HEK293 , Humanos , Cinética , Luciferasas/genética , Nucleopoliedrovirus/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Receptores de Vasopresinas/metabolismo , Proteínas Recombinantes/metabolismo , Transducción Genética , Arrestina beta 2/metabolismo
10.
Hum Brain Mapp ; 39(7): 3072-3085, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29582502

RESUMEN

Identifying someone else's noncooperative intentions can prevent exploitation in social interactions. Hence, the inference of another person's mental state might be most pronounced in order to improve social decision-making. Here, we tested the hypothesis that brain regions associated with Theory of Mind (ToM), particularly the right temporo-parietal junction (rTPJ), show higher neural responses when interacting with a selfish person and that the rTPJ-activity as well as cooperative tendencies will change over time. We used functional magnetic resonance imaging (fMRI) and a modified prisoner's dilemma game in which 20 participants interacted with three fictive playing partners who behaved according to stable strategies either competitively, cooperatively or randomly during seven interaction blocks. The rTPJ and the posterior-medial prefrontal cortex showed higher activity during the interaction with a competitive compared with a cooperative playing partner. Only the rTPJ showed a high response during an early interaction phase, which preceded participants increase in defective decisions. Enhanced functional connectivity between the rTPJ and the left hippocampus suggests that social cognition and learning processes co-occur when behavioral adaptation seems beneficial.


Asunto(s)
Mapeo Encefálico/métodos , Conducta Competitiva , Conducta Cooperativa , Toma de Decisiones/fisiología , Hipocampo/fisiología , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Aprendizaje Social/fisiología , Percepción Social , Lóbulo Temporal/fisiología , Teoría de la Mente/fisiología , Adulto , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Lóbulo Parietal/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven
11.
Plasmid ; 98: 1-7, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29842913

RESUMEN

Baculovirus is an insect virus which has been used for more than thirty years for production of recombinant proteins in insect cells. However, baculovirus can also be harnessed for efficient gene delivery to mammalian cells if it is equipped with mammalian promoters. This technology is known as BacMam and has been used for gene delivery to immortalized cell lines, stem cells, and primary cells, as well as for gene delivery in animals. Baculovirus has unique features when compared to mammalian viruses. Besides the fact that it is replication-incompetent and does not integrate into the host genome, it has large capacity for foreign DNA. This capacity can for example be used to deliver multiple genes for reprogramming of stem cells, or for delivery of large homology constructs for genome editing. In this review, we provide a brief overview of baculovirus-based gene delivery and its recent applications in therapy and basic research. We also describe how baculovirus is manipulated for efficient transduction in mammalian cells and we highlight possible future improvements.


Asunto(s)
Baculoviridae/genética , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/administración & dosificación , Plásmidos/administración & dosificación , Animales , Humanos
12.
Plasmid ; 90: 5-9, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28119062

RESUMEN

Genome editing in eukaryotes became easier in the last years with the development of nucleases that induce double strand breaks in DNA at user-defined sites. CRISPR/Cas9-based genome editing is currently one of the most powerful strategies. In the easiest case, a nuclease (e.g. Cas9) and a target defining guide RNA (gRNA) are transferred into a target cell. Non-homologous end joining (NHEJ) repair of the DNA break following Cas9 cleavage can lead to inactivation of the target gene. Specific repair or insertion of DNA with Homology Directed Repair (HDR) needs the simultaneous delivery of a repair template. Recombinant Lentivirus or Adenovirus genomes have enough capacity for a nuclease coding sequence and the gRNA but are usually too small to also carry large targeting constructs. We recently showed that a baculovirus-based multigene expression system (MultiPrime) can be used for genome editing in primary cells since it possesses the necessary capacity to carry the nuclease and gRNA expression constructs and the HDR targeting sequences. Here we present new Acceptor plasmids for MultiPrime that allow simplified cloning of baculoviruses for genome editing and we show their functionality in primary cells with limited life span and induced pluripotent stem cells (iPS).


Asunto(s)
Baculoviridae/genética , Sistemas CRISPR-Cas , Reparación del ADN por Unión de Extremidades , Edición Génica/métodos , Ingeniería Genética/métodos , Proteína HMGA1a/genética , Animales , Baculoviridae/metabolismo , Roturas del ADN de Doble Cadena , Endonucleasas/metabolismo , Células HEK293 , Proteína HMGA1a/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/virología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/virología , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Células Sf9 , Spodoptera
13.
Genet Epidemiol ; 38(6): 516-22, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25048299

RESUMEN

Case-parent trio studies are commonly employed in genetics to detect variants underlying common complex disease risk. Both commercial and freely available software suites for genetic data analysis usually contain methods for case-parent trio designs. A user might, however, experience limitations with these packages, which can include missing functionality to extend the software if a desired analysis has not been implemented, and the inability to programmatically capture all the software versions used for low-level processing and high-level inference of genomic data, a critical consideration in particular for high-throughput experiments. Here, we present a software vignette (i.e., a manual with step by step instructions and examples to demonstrate software functionality) for reproducible genome-wide analyses of case-parent trio data using the open source Bioconductor package trio. The workflow for the practitioner uses data from previous genetic trio studies to illustrate functions for marginal association tests, assessment of parent-of-origin effects, power and sample size calculations, and functions to detect gene-gene and gene-environment interactions associated with disease.


Asunto(s)
Variación Genética , Programas Informáticos , Niño , Interacción Gen-Ambiente , Estudios de Asociación Genética , Genotipo , Humanos , Padres , Polimorfismo de Nucleótido Simple
14.
Plasmid ; 75: 12-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25034976

RESUMEN

Multigene delivery systems for heterologous multiprotein expression in mammalian cells are a key technology in contemporary biological research. Multiprotein expression is essential for a variety of applications, including multiparameter analysis of living cells in vitro, changing the fate of stem cells, or production of multiprotein complexes for structural biology. Depending on the application, these expression systems have to fulfill different requirements. For some applications, homogenous expression in all cells with defined stoichiometry is necessary, whereas other applications need long term expression or require that the proteins are not modified at the N- and C-terminus. Here we summarize available multiprotein expression systems and discuss their advantages and disadvantages.


Asunto(s)
Células Eucariotas/metabolismo , Regulación de la Expresión Génica , Complejos Multiproteicos/genética , Animales , Clonación Molecular , Mamíferos/genética , Complejos Multiproteicos/metabolismo , Plásmidos/genética , Transfección/métodos
15.
Exp Cell Res ; 319(9): 1340-7, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23499743

RESUMEN

During development, regeneration and in certain pathological settings, the vasculature is expanded and remodeled substantially. Proper morphogenesis and function of blood vessels are essential in multicellular organisms. Upon stimulation with growth factors including vascular endothelial growth factors (VEGFs), the activation, internalization and sorting of receptor tyrosine kinases (RTKs) orchestrate developmental processes and the homeostatic maintenance of all organs including the vasculature. Previously, RTK signaling was thought to occur exclusively at the plasma membrane, a process that was subsequently terminated by endocytosis and receptor degradation. However, this model turned out to be an oversimplification and there is now a substantial amount of reports indicating that receptor internalization and trafficking to intracellular compartments depends on coreceptors leading to the activation of specific signaling pathways. Here we review the latest findings concerning endocytosis and intracellular trafficking of VEGFRs. The body of evidence is compelling that VEGF receptor trafficking is coordinated with other proteins such as Neuropilin-1, ephrin-B2, VE-cadherin and protein phosphatases.


Asunto(s)
Neovascularización Fisiológica , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Adhesión Celular , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Humanos , Neuropilina-1/metabolismo , Transporte de Proteínas , Receptor Cross-Talk , Receptores Notch/metabolismo
16.
Prog Neurobiol ; 236: 102602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582324

RESUMEN

Language is bounded to the left hemisphere in the adult brain and the functional lateralization can already be observed early during development. Here we investigate whether this is paralleled by a lateralization of the white matter structural language network. We analyze the strength and microstructural properties of language-related fiber tracts connecting temporal and frontal cortices with a separation of two dorsal tracts, one targeting the posterior Broca's area (BA44) and one targeting the precentral gyrus (BA6). In a large sample of young children (3-6 years), we demonstrate that, in contrast to the BA6-targeting tract, the microstructural asymmetry of the BA44-targeting fiber tract significantly correlates locally with different aspects of development. While the asymmetry in its anterior segment reflects age, the asymmetry in its posterior segment is associated with the children's language skills. These findings demonstrate a fine-grained structure-to-function mapping in the lateralized network and go beyond our current view of language-related human brain maturation.


Asunto(s)
Área de Broca , Lateralidad Funcional , Humanos , Área de Broca/fisiología , Preescolar , Masculino , Niño , Femenino , Lateralidad Funcional/fisiología , Vías Nerviosas/fisiología , Lenguaje , Sustancia Blanca/fisiología , Sustancia Blanca/crecimiento & desarrollo , Imagen de Difusión Tensora , Desarrollo del Lenguaje
17.
Blood ; 118(3): 816-26, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21586748

RESUMEN

Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel development by activating 3 receptor tyrosine kinases (RTKs), VEGFR-1, -2, and -3, and by binding to coreceptors such as neuropilin-1 (NRP-1). We investigated how different VEGF-A isoforms, in particular VEGF-A(165)a and VEGF-A(165)b, control the balance between VEGFR-2 recycling, degradation, and signaling. Stimulation of cells with the NRP-1-binding VEGF-A(165)a led to sequential NRP-1-mediated VEGFR-2 recycling through Rab5, Rab4, and Rab11 vesicles. Recycling was accompanied by dephosphorylation of VEGFR-2 between Rab4 and Rab11 vesicles and quantitatively and qualitatively altered signal output. In cells stimulated with VEGF-A(165)b, an isoform unable to bind NRP-1, VEGFR-2 bypassed Rab11 vesicles and was routed to the degradative pathway specified by Rab7 vesicles. Deletion of the GIPC (synectin) binding motif of NRP-1 prevented transition of VEGFR-2 through Rab11 vesicles and attenuated signaling. Coreceptor engagement was specific for VEGFR-2 because EGFR recycled through Rab11 vesicles in the absence of known coreceptors. Our data establish a distinct role of NRP-1 in VEGFR-2 signaling and reveal a general mechanism for the function of coreceptors in modulating RTK signal output.


Asunto(s)
Células Endoteliales/metabolismo , Neuropilina-1/metabolismo , Transducción de Señal/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Aorta/citología , Células Cultivadas , Células Endoteliales/citología , Exones/genética , Humanos , Neuropilina-1/química , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Transducción de Señal/efectos de los fármacos , Porcinos , Vesículas Transportadoras/metabolismo , Venas Umbilicales/citología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Unión al GTP rab4/metabolismo
18.
Comput Struct Biotechnol J ; 21: 1189-1204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817952

RESUMEN

Three common Apolipoprotein E isoforms, ApoE2, ApoE3, and ApoE4, are key regulators of lipid homeostasis, among other functions. Apolipoprotein E can interact with amyloid proteins. The isoforms differ by one or two residues at positions 112 and 158, and possess distinct structural conformations and functions, leading to isoform-specific roles in amyloid-based neurodegenerative diseases. Over 30 different amyloid proteins have been found to share similar characteristics of structure and toxicity, suggesting a common interactome. The molecular and genetic interactions of ApoE with amyloid proteins have been extensively studied in neurodegenerative diseases, but have not yet been well connected and clarified. Here we summarize essential features of the interactions between ApoE and different amyloid proteins, identify gaps in the understanding of the interactome and propose the general interaction mechanism between ApoE isoforms and amyloid proteins. Perhaps more importantly, this review outlines what we can learn from the interactome of ApoE and amyloid proteins; that is the need to see both ApoE and amyloid proteins as a basis to understand neurodegenerative diseases.

19.
J Nucl Med ; 64(6): 873-879, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36732057

RESUMEN

α-particle emitters have recently been explored as valuable therapeutic radionuclides. Yet, toxicity to healthy organs and cancer radioresistance limit the efficacy of targeted α-particle therapy (TAT). Identification of the radiation-activated mechanisms that drive cancer cell survival provides opportunities to develop new points for therapeutic interference to improve the efficacy and safety of TAT. Methods: Quantitative phosphoproteomics and matching proteomics followed by the bioinformatics analysis were used to identify alterations in the signaling networks in response to TAT with the 225Ac-labeled minigastrin analog 225Ac-PP-F11N (DOTA-(dGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe) in A431 cells, which overexpress cholecystokinin B receptor (CCKBR). Western blot analysis and microscopy verified the activation of the selected signaling pathways. Small-molecule inhibitors were used to validate the potential of the radiosensitizing combinatory treatments both in vitro and in A431/CCKBR tumor-bearing nude mice. Results: TAT-induced alterations were involved in DNA damage response, cell cycle regulation, and signal transduction, as well as RNA transcription and processing, cell morphology, and transport. Western blot analysis and microscopy confirmed increased phosphorylations of the key proteins involved in DNA damage response and carcinogenesis, including p53, p53 binding protein 1 (p53BP1), histone deacetylases (HDACs), and H2AX. Inhibition of HDAC class II, ataxia-telangiectasia mutated (ATM), and p38 kinases by TMP269, AZD1390, and SB202190, respectively, sensitized A431/CCKBR cells to 225Ac-PP-F11N. As compared with the control and monotherapies, the combination of 225Ac-PP-F11N with the HDAC inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) significantly reduced the viability and increased the DNA damage of A431/CCKBR cells, led to the most pronounced tumor growth inhibition, and extended the mean survival of A431/CCKBR xenografted nude mice. Conclusion: Our study revealed the cellular responses to TAT and demonstrated the radiosensitizing potential of HDAC inhibitors to 225Ac-PP-F11N in CCKBR-positive tumors. This proof-of-concept study recommends development of novel radiosensitizing strategies by targeting TAT-activated and survival-promoting signaling pathways.


Asunto(s)
Inhibidores de Histona Desacetilasas , Proteína p53 Supresora de Tumor , Animales , Ratones , Inhibidores de Histona Desacetilasas/farmacología , Ratones Desnudos , Línea Celular Tumoral , Vorinostat/farmacología , Transducción de Señal , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico
20.
J Immunother Cancer ; 11(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36918222

RESUMEN

BACKGROUND: The inflammatory tumor microenvironment (TME) is formed by various immune cells, being closely associated with tumorigenesis. Especially, the interaction between tumor-infiltrating T-cells and macrophages has a crucial impact on tumor progression and metastatic spread. The purpose of this study was to investigate whether oscillating-gradient diffusion-weighted MRI (OGSE-DWI) enables a cell size-based discrimination between different cell populations of the TME. METHODS: Sine-shaped OGSE-DWI was combined with the Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion (IMPULSED) approach to measure microscale diffusion distances, here relating to cell sizes. The accuracy of IMPULSED-derived cell radii was evaluated using in vitro spheroid models, consisting of either pure cancer cells, macrophages, or T-cells. Subsequently, in vivo experiments aimed to assess changes within the TME and its specific immune cell composition in syngeneic murine breast cancer models with divergent degrees of malignancy (4T1, 67NR) during tumor progression, clodronate liposome-mediated depletion of macrophages, and immune checkpoint inhibitor (ICI) treatment. Ex vivo analysis of IMPULSED-derived cell radii was conducted by immunohistochemical wheat germ agglutinin staining of cell membranes, while intratumoral immune cell composition was analyzed by CD3 and F4/80 co-staining. RESULTS: OGSE-DWI detected mean cell radii of 8.8±1.3 µm for 4T1, 8.2±1.4 µm for 67NR, 13.0±1.7 for macrophage, and 3.8±1.8 µm for T-cell spheroids. While T-cell infiltration during progression of 4T1 tumors was observed by decreasing mean cell radii from 9.7±1.0 to 5.0±1.5 µm, increasing amount of intratumoral macrophages during progression of 67NR tumors resulted in increasing mean cell radii from 8.9±1.2 to 12.5±1.1 µm. After macrophage depletion, mean cell radii decreased from 6.3±1.7 to 4.4±0.5 µm. T-cell infiltration after ICI treatment was captured by decreasing mean cell radii in both tumor models, with more pronounced effects in the 67NR tumor model. CONCLUSIONS: OGSE-DWI provides a versatile tool for non-invasive profiling of the inflammatory TME by assessing the dominating cell type T-cells or macrophages.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Ratones , Animales , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Linfocitos T , Macrófagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA