Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunogenetics ; 70(6): 363-372, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29196796

RESUMEN

Around 30% of individuals will develop herpes zoster (HZ), caused by the varicella zoster virus (VZV), during their life. While several risk factors for HZ, such as immunosuppressive therapy, are well known, the genetic and molecular components that determine the risk of otherwise healthy individuals to develop HZ are still poorly understood. We created a computational model for the Human Leukocyte Antigen (HLA-A, -B, and -C) presentation capacity of peptides derived from the VZV Immediate Early 62 (IE62) protein. This model could then be applied to a HZ cohort with known HLA molecules. We found that HLA-A molecules with poor VZV IE62 presentation capabilities were more common in a cohort of 50 individuals with a history of HZ compared to a nationwide control group, which equated to a HZ risk increase of 60%. This tendency was most pronounced for cases of HZ at a young age, where other risk factors are less prevalent. These findings provide new molecular insights into the development of HZ and reveal a genetic predisposition in those individuals most at risk to develop HZ.


Asunto(s)
Antígenos HLA-A/inmunología , Herpes Zóster/inmunología , Herpesvirus Humano 3/inmunología , Proteínas Inmediatas-Precoces/inmunología , Transactivadores/inmunología , Proteínas del Envoltorio Viral/inmunología , Adulto , Anciano , Bélgica/epidemiología , Varicela/inmunología , Varicela/virología , Femenino , Predisposición Genética a la Enfermedad , Herpes Zóster/epidemiología , Herpes Zóster/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Masculino , Persona de Mediana Edad , Modelos Inmunológicos , Factores de Riesgo , Transactivadores/genética , Proteínas del Envoltorio Viral/genética
2.
Acta Neuropathol ; 136(6): 939-953, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30284034

RESUMEN

Motor neurons containing aggregates of superoxide dismutase 1 (SOD1) are hallmarks of amyotrophic lateral sclerosis (ALS) caused by mutations in the gene encoding SOD1. We have previously reported that two strains of mutant human (h) SOD1 aggregates (denoted A and B) can arise in hSOD1-transgenic models for ALS and that inoculation of such aggregates into the lumbar spinal cord of mice results in rostrally spreading, templated hSOD1 aggregation and premature fatal ALS-like disease. Here, we explored whether mutant hSOD1 aggregates with prion-like properties also exist in human ALS. Aggregate seeds were prepared from spinal cords from an ALS patient carrying the hSOD1G127Gfs*7 truncation mutation and from mice transgenic for the same mutation. To separate from mono-, di- or any oligomeric hSOD1 species, the seed preparation protocol included ultracentrifugation through a density cushion. The core structure of hSOD1G127Gfs*7 aggregates present in mice was strain A-like. Inoculation of the patient- or mouse-derived seeds into lumbar spinal cord of adult hSOD1-expressing mice induced strain A aggregation propagating along the neuraxis and premature fatal ALS-like disease (p < 0.0001). Inoculation of human or murine control seeds had no effect. The potencies of the ALS patient-derived seed preparations were high and disease was initiated in the transgenic mice by levels of hSOD1G127Gfs*7 aggregates much lower than those found in the motor system of patients carrying the mutation. The results suggest that prion-like growth and spread of hSOD1 aggregation could be the primary pathogenic mechanism, not only in hSOD1 transgenic rodent models, but also in human ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Mutación/genética , Agregado de Proteínas/fisiología , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Anciano , Animales , Mapeo Epitopo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Médula Espinal/patología , Superóxido Dismutasa/química
3.
Proc Natl Acad Sci U S A ; 112(14): 4489-94, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25802384

RESUMEN

Despite considerable progress in uncovering the molecular details of protein aggregation in vitro, the cause and mechanism of protein-aggregation disease remain poorly understood. One reason is that the amount of pathological aggregates in neural tissue is exceedingly low, precluding examination by conventional approaches. We present here a method for determination of the structure and quantity of aggregates in small tissue samples, circumventing the above problem. The method is based on binary epitope mapping using anti-peptide antibodies. We assessed the usefulness and versatility of the method in mice modeling the neurodegenerative disease amyotrophic lateral sclerosis, which accumulate intracellular aggregates of superoxide dismutase-1. Two strains of aggregates were identified with different structural architectures, molecular properties, and growth kinetics. Both were different from superoxide dismutase-1 aggregates generated in vitro under a variety of conditions. The strains, which seem kinetically under fragmentation control, are associated with different disease progressions, complying with and adding detail to the growing evidence that seeding, infectivity, and strain dependence are unifying principles of neurodegenerative disease.


Asunto(s)
Mapeo Epitopo/métodos , Proteínas/química , Superóxido Dismutasa/genética , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Animales , Encéfalo/metabolismo , Epítopos/química , Humanos , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Enfermedades Neurodegenerativas/metabolismo , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Médula Espinal/metabolismo , Superóxido Dismutasa/química , Superóxido Dismutasa-1
4.
Oecologia ; 185(2): 317-326, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28884383

RESUMEN

Plant growth in northern forest ecosystems is considered to be primarily nitrogen limited. Nitrogen deposition is predicted to change this towards co-limitation/limitation by other nutrients (e.g., phosphorus), although evidence of such stoichiometric effects is scarce. We utilized two forest fertilization experiments in southern Sweden to analyze single and combined effects of nitrogen and phosphorus on the productivity, composition, and diversity of the ground vegetation. Our results indicate that the productivity of forest ground vegetation in southern Sweden is co-limited by nitrogen and phosphorus. Additionally, the combined effect of nitrogen and phosphorus on the productivity was larger than when applied solely. No effects on species richness of any of these two nutrients were observed when applied separately, while applied in combination, they increased species richness and changed species composition, mainly by promoting more mesotrophic species. All these effects, however, occurred only for the vascular plants and not for bryophytes. The tree layer in a forest has a profound impact on the productivity and diversity of the ground vegetation by competing for both light and nutrients. This was confirmed in our study where a combination of nitrogen and high tree basal area reduced cover of the ground vegetation compared to all the other treatments where basal area was lower after stand thinning. During the past decades, nitrogen deposition may have further increased this competition from the trees for phosphorus and gradually reduced ground vegetation diversity. Phosphorus limitation induced by nitrogen deposition may, thus, contribute to ongoing changes in forest ground vegetation.


Asunto(s)
Biodiversidad , Bosques , Nitrógeno/metabolismo , Fósforo/metabolismo , Árboles/crecimiento & desarrollo , Contaminantes Ambientales/análisis , Contaminantes Ambientales/metabolismo , Actividades Humanas , Nitrógeno/análisis , Fósforo/análisis , Suecia
5.
Hum Mol Genet ; 22(1): 51-60, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23026746

RESUMEN

A common cause of amyotrophic lateral sclerosis (ALS) is mutations in the gene encoding superoxide dismutase-1. There is evolving circumstantial evidence that the wild-type protein can also be neurotoxic and that it may more generally be involved in the pathogenesis of ALS. To test this proposition more directly, we generated mice that express wild-type human superoxide dismutase-1 at a rate close to that of mutant superoxide dismutase-1 in the commonly studied G93A transgenic model. These mice developed an ALS-like syndrome and became terminally ill after around 370 days. The loss of spinal ventral neurons was similar to that in the G93A and other mutant superoxide dismutase-1 models, and large amounts of aggregated superoxide dismutase-1 were found in spinal cords, but also in the brain. The findings show that wild-type human superoxide dismutase-1 has the ability to cause ALS in mice, and they support the hypothesis of a more general involvement of the protein in the disease in humans.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/enzimología , Animales , Secuencia de Bases , Northern Blotting , Western Blotting , Cartilla de ADN , Humanos , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa , Médula Espinal/enzimología , Superóxido Dismutasa-1
6.
Cancer Immunol Immunother ; 64(7): 831-42, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25863943

RESUMEN

Dendritic cell (DC) vaccination has demonstrated potential in clinical trials as a new effective cancer treatment, but objective and durable clinical responses are confined to a minority of patients. Interferon (IFN)-α, a type-I IFN, can bolster anti-tumor immunity by restoring or increasing the function of DCs, T cells and natural killer (NK) cells. Moreover, type-I IFN signaling on DCs was found to be essential in mice for tumor rejection by the innate and adaptive immune system. Targeted delivery of IFN-α by DCs to immune cells could boost the generation of anti-tumor immunity, while avoiding the side effects frequently associated with systemic administration. Naturally circulating plasmacytoid DCs, major producers of type-I IFN, were already shown capable of inducing tumor antigen-specific T cell responses in cancer patients without severe toxicity, but their limited number complicates their use in cancer vaccination. In the present work, we hypothesized that engineering easily generated human monocyte-derived mature DCs to secrete IFN-α using mRNA electroporation enhances their ability to promote adaptive and innate anti-tumor immunity. Our results show that IFN-α mRNA electroporation of DCs significantly increases the stimulation of tumor antigen-specific cytotoxic T cell as well as anti-tumor NK cell effector functions in vitro through high levels of IFN-α secretion. Altogether, our findings mark IFN-α mRNA-electroporated DCs as potent inducers of both adaptive and innate anti-tumor immunity and pave the way for clinical trial evaluation in cancer patients.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Interferón-alfa/metabolismo , Proteínas WT1/inmunología , Antígenos de Neoplasias/genética , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular/genética , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/trasplante , Electroporación , Humanos , Inmunoterapia Adoptiva , Interferón-alfa/genética , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Neoplasias/inmunología , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , Proteínas WT1/genética
7.
J Cell Mol Med ; 18(7): 1372-80, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24979331

RESUMEN

Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells.


Asunto(s)
Células Dendríticas/inmunología , Células Asesinas Naturales/inmunología , Papillomaviridae/inmunología , Infecciones por Papillomavirus/inmunología , Vacunas contra Papillomavirus/uso terapéutico , Linfocitos T Citotóxicos/inmunología , Neoplasias del Cuello Uterino/inmunología , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/patología , Femenino , Humanos , Inmunidad Innata/inmunología , Inmunofenotipificación , Interleucina-15/inmunología , Interleucina-15/metabolismo , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/patología , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/prevención & control , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Citotóxicos/patología , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/prevención & control
8.
Cell Rep ; 43(4): 114062, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38588339

RESUMEN

The role of T cell receptor (TCR) diversity in infectious disease susceptibility is not well understood. We use a systems immunology approach on three cohorts of herpes zoster (HZ) patients and controls to investigate whether TCR diversity against varicella-zoster virus (VZV) influences the risk of HZ. We show that CD4+ T cell TCR diversity against VZV glycoprotein E (gE) and immediate early 63 protein (IE63) after 1-week culture is more restricted in HZ patients. Single-cell RNA and TCR sequencing of VZV-specific T cells shows that T cell activation pathways are significantly decreased after stimulation with VZV peptides in convalescent HZ patients. TCR clustering indicates that TCRs from HZ patients co-cluster more often together than TCRs from controls. Collectively, our results suggest that not only lower VZV-specific TCR diversity but also reduced functional TCR affinity for VZV-specific proteins in HZ patients leads to lower T cell activation and consequently affects the susceptibility for viral reactivation.


Asunto(s)
Herpes Zóster , Herpesvirus Humano 3 , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T , Humanos , Herpes Zóster/inmunología , Herpes Zóster/virología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Activación de Linfocitos/inmunología , Herpesvirus Humano 3/inmunología , Femenino , Persona de Mediana Edad , Masculino , Linfocitos T CD4-Positivos/inmunología , Anciano , Adulto , Epítopos de Linfocito T/inmunología
9.
Chemistry ; 17(32): 8832-40, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21755546

RESUMEN

C2 and C3 alkanes are selectively adsorbed from mixtures over the corresponding alkenes on the zeolite imidazolate framework ZIF-7 through a gate-opening mechanism. As a result, the direct production of the pure alkene upon adsorption and the pure alkane upon desorption in packed columns is possible. Herein, a detailed investigation of the step-wise adsorption and separation of alkanes and alkenes is presented, together with a rigorous performance assessment. A molecular picture of the gate-opening mechanism underlying the unprecedented selectivity towards alkane adsorption is proposed based on DFT calculations and a thermodynamic analysis of the adsorption-desorption isotherms.

10.
Ambio ; 40(5): 521-7, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21848140

RESUMEN

Repeated fertilization of forests to increase biomass production is an environmentally controversial proposal, the effects of which we assessed on breeding birds in stands of young Norway spruce (Picea abies), in an intensively managed forest area in southern Sweden. Our results show that fertilized stands had 38% more species and 21% more individuals than unfertilized stands. Compared with stands under traditional management, the further intensification of forestry by repeated applications of fertilizers thus seemed to enhance species richness and abundance of forest birds. We cannot conclude at this stage whether the response in the bird community was caused by changes in food resources or increased structural complexity in the forest canopy due to the skid roads used for the application of the fertilizers. Future studies should focus on structural and compositional effects of fertilization processes during the entire rotation period and at assessing its effects in a landscape


Asunto(s)
Aves/clasificación , Fertilizantes , Picea , Árboles , Animales , Biodiversidad
11.
J Am Chem Soc ; 132(50): 17704-6, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21114318

RESUMEN

Ethane is selectively adsorbed over ethylene in their mixtures on the zeolite imidazolate framework ZIF-7. In packed columns, this results in the direct production of pure ethylene. This gas-phase separation is attributed to a gate-opening effect in which specific threshold pressures control the uptake and release of individual molecules. These threshold pressures differ for the different molecules, leaving a window of selective uptake operation. This phenomenon makes ZIF-7 a perfect candidate for the separation of olefins from paraffins, since in contrast to most microporous materials, the paraffin is selectively adsorbed. Mixture adsorption, as studied by breakthrough experiments, demonstrates that gate-opening effects can be effectively used to separate molecules of very similar size.

12.
J Oral Maxillofac Surg ; 66(7): 1426-38, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18571027

RESUMEN

PURPOSE: To investigate the prevalence of anatomical and surgical findings and complications in maxillary sinus floor elevation surgery, and to describe the clinical implications. PATIENTS AND METHODS: One hundred consecutive patients scheduled for maxillary sinus floor elevation were included. The patients consisted of 36 men (36%) and 64 women (64%), with a mean age of 50 years (range, 17 to 73 years). In 18 patients, a bilateral procedure was performed. Patients were treated with a top hinge door in the lateral maxillary sinus wall, as described by Tatum (Dent Clin North Am 30:207, 1986). In bilateral cases, only the first site treated was evaluated. RESULTS: In most cases, an anatomical or surgical finding forced a deviation from Tatum's standard procedure. A thin or thick lateral maxillary sinus wall was found in 78% and 4% of patients, respectively. In 6%, a strong convexity of the lateral sinus wall called for an alternative method of releasing the trapdoor. The same method was used in 4% of cases involving a narrow sinus. The sinus floor elevation procedure was hindered by septa in 48%. In regard to complications, the most common complication, a perforation of the Schneiderian membrane, occurred in 11% of patients. In 2%, visualization of the trapdoor preparation was compromised because of hemorrhages. The initial incision design, ie, slightly palatal, was responsible for a local dehiscence in 3%. CONCLUSION: To avoid unnecessary surgical complications, detailed knowledge and timely identification of the anatomic structures inherent to the maxillary sinus are required.


Asunto(s)
Implantación Dental Endoósea , Seno Maxilar/anatomía & histología , Seno Maxilar/cirugía , Procedimientos Quirúrgicos Preprotésicos Orales/efectos adversos , Procedimientos Quirúrgicos Preprotésicos Orales/métodos , Adolescente , Adulto , Anciano , Pérdida de Sangre Quirúrgica , Femenino , Humanos , Masculino , Sinusitis Maxilar/etiología , Persona de Mediana Edad , Mucosa Nasal/lesiones , Estudios Prospectivos , Dehiscencia de la Herida Operatoria
13.
Front Immunol ; 9: 394, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29599770

RESUMEN

Two decades of clinical cancer research with dendritic cell (DC)-based vaccination have proved that this type of personalized medicine is safe and has the capacity to improve survival, but monotherapy is unlikely to cure the cancer. Designed to empower the patient's antitumor immunity, huge research efforts are set to improve the efficacy of next-generation DC vaccines and to find synergistic combinations with existing cancer therapies. Immune checkpoint approaches, aiming to breach immune suppression and evasion to reinforce antitumor immunity, have been a revelation in the immunotherapy field. Early success of therapeutic antibodies blocking the programmed death-1 (PD-1) pathway has sparked the development of novel inhibitors and combination therapies. Hence, merging immunoregulatory tumor-specific DC strategies with PD-1-targeted approaches is a promising path to explore. In this review, we focus on the role of PD-1-signaling in DC-mediated antitumor immunity. In the quest of exploiting the full potential of DC therapy, different strategies to leverage DC immunopotency by impeding PD-1-mediated immune regulation are discussed, including the most advanced research on targeted therapeutic antibodies, lessons learned from chemotherapy-induced immune activation, and more recent developments with soluble molecules and gene-silencing techniques. An overview of DC/PD-1 immunotherapy combinations that are currently under preclinical and clinical investigation substantiates the clinical potential of such combination strategies.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Vacunas contra el Cáncer/inmunología , Células Dendríticas/trasplante , Inmunoterapia/métodos , Neoplasias/terapia , Animales , Terapia Combinada , Células Dendríticas/inmunología , Evaluación Preclínica de Medicamentos , Humanos , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología
14.
Oncotarget ; 9(45): 27797-27808, 2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-29963238

RESUMEN

Blockade of programmed cell death protein 1 (PD-1) immune checkpoint receptor signaling is an established standard treatment for many types of cancer and indications are expanding. Successful clinical trials using monoclonal antibodies targeting PD-1 signaling have boosted preclinical research, encouraging development of novel therapeutics. Standardized assays to evaluate their bioactivity, however, remain restricted. The robust bioassays available all lack antigen-specificity. Here, we developed an antigen-specific, short-term and high-throughput T cell assay with versatile readout possibilities. A genetically modified T cell receptor (TCR)-deficient T cell line was stably transduced with PD-1. Transfection with messenger RNA encoding a TCR of interest and subsequent overnight stimulation with antigen-presenting cells, results in eGFP-positive and granzyme B-producing T cells for single cell or bulk analysis. Control antigen-presenting cells induced reproducible high antigen-specific eGFP and granzyme B expression. Upon PD-1 interaction, ligand-positive antigen-presenting immune or tumor cells elicited significantly lower eGFP and granzyme B expression, which could be restored by anti-PD-(L)1 blocking antibodies. This convenient cell-based assay shows a valuable tool for translational and clinical research on antigen-specific checkpoint-targeted therapy approaches.

15.
Front Immunol ; 9: 2503, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30464762

RESUMEN

Genetic engineering of T cells with tumor specific T-cell receptors (TCR) is a promising strategy to redirect their specificity against cancer cells in adoptive T cell therapy protocols. Most studies are exploiting integrating retro- or lentiviral vectors to permanently introduce the therapeutic TCR, which can pose serious safety issues when treatment-related toxicities would occur. Therefore, we developed a versatile, non-genotoxic transfection method for human unstimulated CD8+ T cells. We describe an optimized double sequential electroporation platform whereby Dicer-substrate small interfering RNAs (DsiRNA) are first introduced to suppress endogenous TCR α and ß expression, followed by electroporation with DsiRNA-resistant tumor-specific TCR mRNA. We demonstrate that double sequential electroporation of human primary unstimulated T cells with DsiRNA and TCR mRNA leads to unprecedented levels of transgene TCR expression due to a strongly reduced degree of TCR mispairing. Importantly, superior transgenic TCR expression boosts epitope-specific CD8+ T cell activation and killing activity. Altogether, DsiRNA and TCR mRNA double sequential electroporation is a rapid, non-integrating and highly efficient approach with an enhanced biosafety profile to engineer T cells with antigen-specific TCRs for use in early phase clinical trials.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Ingeniería Genética/métodos , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , ARN/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/trasplante , Citotoxicidad Inmunológica , Electroporación , Epítopos de Linfocito T/inmunología , Vectores Genéticos , Humanos , Neoplasias/inmunología , ARN Interferente Pequeño/genética , Ribonucleasa III/metabolismo , Especificidad del Receptor de Antígeno de Linfocitos T
16.
Oncoimmunology ; 7(3): e1407899, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29399410

RESUMEN

Prognosis of glioblastoma remains dismal, underscoring the need for novel therapies. Immunotherapy is generating promising results, but requires combination strategies to unlock its full potential. We investigated the immunomodulatory capacities of poly(I:C) on primary human glioblastoma cells and its combinatorial potential with programmed death ligand (PD-L) blockade. In our experiments, poly(I:C) stimulated expression of both PD-L1 and PD-L2 on glioblastoma cells, and a pro-inflammatory secretome, including type I interferons (IFN) and chemokines CXCL9, CXCL10, CCL4 and CCL5. IFN-ß was partially responsible for the elevated PD-1 ligand expression on these cells. Moreover, real-time PCR and chloroquine-mediated blocking experiments indicated that poly(I:C) triggered Toll-like receptor 3 to elicit its effect. Cocultures of poly(I:C)-treated glioblastoma cells with peripheral blood mononuclear cells enhanced lymphocytic activation (CD69, IFN-γ) and cytotoxic capacity (CD107a, granzyme B). Additional PD-L1 blockade further propagated immune activation. Besides activating immunity, poly(I:C)-treated glioblastoma cells also doubled the attraction of CD8+ T cells, and to a lesser extent CD4+ T cells, via a mechanism which included CXCR3 and CCR5 ligands. Our results indicate that by triggering glioblastoma cells, poly(I:C) primes the tumor microenvironment for an immune response. Secreted cytokines allow for immune activation while chemokines attract CD8+ T cells to the front, which are postulated as a prerequisite for effective PD-1/PD-L1 blockade. Accordingly, additional blockade of the concurrently elevated tumoral PD-L1 further reinforces the immune activation. In conclusion, our data proposes poly(I:C) treatment combined with PD-L1 blockade to invigorate the immune checkpoint inhibition response in glioblastoma.

17.
Pharmacol Ther ; 170: 73-79, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27777088

RESUMEN

Interleukin (IL)-15 as a stand-alone therapy can activate the antitumor functions of immune effector cells resulting in significant tumor regression. Interestingly, combining IL-15 with the α-moiety of its receptor (IL-15Rα), also called IL-15 transpresentation, increases the in vivo half-life of IL-15 and enhances binding of IL-15 with cells expressing the IL-15Rßγ, such as NK cells and CD8+ T cells. These features enlarge the signal transmission of IL-15, resulting in improved proliferation and antitumor activities of both NK cells and CD8+ T cells, eventually leading to enhanced killing of tumor cells. In this review, we discuss the antitumor strategies in which this IL-15 transpresentation mechanism is implemented, that are currently under preclinical investigation. Furthermore, we give an overview of the studies in which the IL-15/IL-15Rα complexes are combined with other antitumor therapies. The promising results in these preclinical studies have incited several clinical trials to test the safety and efficacy of IL-15 transpresentation strategies to treat both hematological and advanced solid tumors.


Asunto(s)
Subunidad alfa del Receptor de Interleucina-15/inmunología , Interleucina-15/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/inmunología , Linfocitos T CD8-positivos/inmunología , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/inmunología , Humanos , Interleucina-15/inmunología , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/patología
18.
Ind Eng Chem Res ; 56(45): 13423-13433, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29170600

RESUMEN

ZnCl2 hydrate, the main molten salt used in biomass conversion, combined with low concentration HCl is an excellent solvent for the dissolution and hydrolysis of the carbohydrates present in lignocellulosic biomass. The most recalcitrant carbohydrate, cellulose, is dissolved in a residence time less than 1 h under mild conditions without significant degradation. This technology is referred to as BIOeCON-solvent technology. Separation of the sugars from the solution is the main challenge. The earlier conclusion regarding the potential of zeolite beta for selective adsorption has been used as the basis of a scale-up study. The technology of choice is continuous chromatographic separation (e.g., simulated moving bed, SMB). The sugar monomers are separated from the sugar oligomers, allowing the production of monosugars at high yield, using water as an eluent. Results of a pilot plant study are presented showing a stable operation at high selectivity. Several process designs are discussed, and the techno-economic performance of the BIOeCON-solvent technology is demonstrated by comparison with the state-of-the-art technology of NREL (National Renewable Energy Laboratory), which is based on enzymatic conversion of cellulose. It is concluded that the BIOeCON-solvent technology is technically and economically viable and is competitive to the NREL process. Because the BIOeCON-solvent process is in an early stage of development and far from fully optimized, it has the potential to outperform the existing processes.

19.
Front Immunol ; 8: 1964, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29403473

RESUMEN

The use of tolerance-inducing dendritic cells (tolDCs) has been proven to be safe and well tolerated in the treatment of autoimmune diseases. Nevertheless, several challenges remain, including finding ways to facilitate the migration of cell therapeutic products to lymph nodes, and the site of inflammation. In the treatment of neuroinflammatory diseases, such as multiple sclerosis (MS), the blood-brain barrier (BBB) represents a major obstacle to the delivery of therapeutic agents to the inflamed central nervous system (CNS). As it was previously demonstrated that C-C chemokine receptor 5 (CCR5) may be involved in inflammatory migration of DCs, the aim of this study was to investigate CCR5-driven migration of tolDCs. Only a minority of in vitro generated vitamin D3 (vitD3)-treated tolDCs expressed the inflammatory chemokine receptor CCR5. Thus, messenger RNA (mRNA) encoding CCR5 was introduced by means of electroporation (EP). After mRNA EP, tolDCs transiently displayed increased levels of CCR5 protein expression. Accordingly, the capacity of mRNA electroporated tolDCs to transmigrate toward a chemokine gradient in an in vitro model of the BBB improved significantly. Neither the tolerogenic phenotype nor the T cell-stimulatory function of tolDCs was affected by mRNA EP. EP of tolDCs with mRNA encoding CCR5 enabled these cells to migrate to inflammatory sites. The approach used herein has important implications for the treatment of MS. Using this approach, tolDCs actively shuttle across the BBB, allowing in situ down-modulation of autoimmune responses in the CNS.

20.
Cancer Immunol Res ; 5(8): 710-715, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28637876

RESUMEN

Although allogeneic stem cell transplantation (allo-SCT) can elicit graft-versus-tumor (GVT) immunity, patients often relapse due to residual tumor cells. As essential orchestrators of the immune system, vaccination with dendritic cells (DC) is an appealing strategy to boost the GVT response. Nevertheless, durable clinical responses after DC vaccination are still limited, stressing the need to improve current DC vaccines. Aiming to empower DC potency, we engineered monocyte-derived DCs to deprive them of ligands for the immune checkpoint regulated by programmed death 1 (PD-1). We also equipped them with interleukin (IL)-15 "transpresentation" skills. Transfection with short interfering (si)RNA targeting the PD-1 ligands PD-L1 and PD-L2, in combination with IL15 and IL15Rα mRNA, preserved their mature DC profile and rendered the DCs superior in inducing T-cell proliferation and IFNγ and TNFα production. Translated into an ex vivo hematological disease setting, DCs deprived of PD-1 ligands (PD-L), equipped with IL15/IL15Rα expression, or most effectively, both, induced superior expansion of minor histocompatibility antigen-specific CD8+ T cells from transplanted cancer patients. These data support the combinatorial approach of in situ suppression of the PD-L inhibitory checkpoints with DC-mediated IL15 transpresentation to promote antigen-specific T-cell responses and, ultimately, contribute to GVT immunity. Cancer Immunol Res; 5(8); 710-5. ©2017 AACR.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Células Dendríticas/trasplante , Interleucina-15/genética , Receptor de Muerte Celular Programada 1/genética , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Efecto Injerto vs Tumor/efectos de los fármacos , Efecto Injerto vs Tumor/inmunología , Humanos , Interleucina-15/antagonistas & inhibidores , Monocitos/inmunología , Monocitos/trasplante , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Proteína 2 Ligando de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , ARN Interferente Pequeño/genética , Trasplante de Células Madre , Transfección , Trasplante Homólogo , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA