Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 7(11): e08445, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34901500

RESUMEN

Implementation of onsite bioremediation technologies is essential for textile industries due to rising concerns in terms of water resources and quality. Partial nitritation-anaerobic ammonium oxidation (PN/A) processes emerged as a valid, but unexplored, solution. In this study, the performance of a PN/A pilot-scale (9 m3) sequencing batch reactor treating digital textile printing wastewater (10-40 m3 d-1) was monitored by computing nitrogen (N) removal rate and efficiencies. Moreover, the structure of the bacterial community was assessed by next generation sequencing and quantitative polymerase chain reaction (qPCR) analyses of several genes, which are involved in the N cycle. Although anaerobic ammonium oxidation activity was inhibited and denitrification occurred, N removal rate increased from 16 to 61 mg N g VSS-1 d-1 reaching satisfactory removal efficiency (up to 70%). Ammonium (18-70 mg L-1) and nitrite (16-82 mg L-1) were detected in the effluent demonstrating an unbalance between the aerobic and anaerobic ammonia oxidation activity, while constant organic N was attributed to recalcitrant azo dyes. Ratio between nitrification and anammox genes remained stable reflecting a constant ammonia oxidation activity. A prevalence of ammonium oxidizing bacteria and denitrifiers suggested the presence of alternative pathways. PN/A resulted a promising cost-effective alternative for textile wastewater N treatment as shown by the technical-economic assessment. However, operational conditions and design need further tailoring to promote the activity of the anammox bacteria.

2.
PLoS One ; 16(3): e0247452, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33651835

RESUMEN

The treatability of seven wastewater samples generated by a textile digital printing industry was evaluated by employing 1) anammox-based processes for nitrogen removal 2) microalgae (Chlorella vulgaris) for nutrient uptake and biomass production 3) white-rot fungi (Pleurotus ostreatus and Phanerochaete chrysosporium) for decolorization and laccase activity. The biodegradative potential of each type of organism was determined in batch tests and correlated with the main characteristics of the textile wastewaters through statistical analyses. The maximum specific anammox activity ranged between 0.1 and 0.2 g N g VSS-1 d-1 depending on the sample of wastewater; the photosynthetic efficiency of the microalgae decreased up to 50% during the first 24 hours of contact with the textile wastewaters, but it improved from then on; Pleurotus ostreatus synthetized laccases and removed between 20-62% of the colour after 14 days, while the enzymatic activity of Phanerochaete chrysosporium was inhibited. Overall, the findings suggest that all microbes have great potential for the treatment and valorisation of textile wastewater after tailored adaptation phases. Yet, the depurative efficiency can be probably enhanced by combining the different processes in sequence.


Asunto(s)
Purificación del Agua/métodos , Compuestos de Amonio/análisis , Compuestos de Amonio/química , Compuestos de Amonio/metabolismo , Biodegradación Ambiental , Biomasa , Chlorella vulgaris/metabolismo , Residuos Industriales/análisis , Residuos Industriales/prevención & control , Microalgas/metabolismo , Phanerochaete/metabolismo , Pleurotus/metabolismo , Industria Textil/tendencias , Aguas Residuales/análisis , Aguas Residuales/química
3.
Environ Sci Pollut Res Int ; 28(34): 46643-46654, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33078358

RESUMEN

Digital textile printing (DTP) is a game-changer technology that is rapidly expanding worldwide. On the other hand, process wastewater is rich in ammoniacal and organic nitrogen, resulting in relevant issues for discharge into sewer system and treatment in centralized plants. The present research is focused on the assessment of the partial nitritation/anammox process in a single-stage granular sequencing batch reactor for on-site decentralized treatment. The technical feasibility of the process was assessed by treating wastewater from five DTP industries in a laboratory-scale reactor, in one case investigating long-term process stabilization. While experimental results indicated nitrogen removal efficiencies up to about 70%, complying with regulations on discharge in sewer system, these data were used as input for process modelling, whose successful parameter calibration was carried out. The model was applied to the simulation of two scenarios: (i) the current situation of a DTP company, in which wastewater is discharged into the sewer system and treated in a centralized plant, (ii) the modified situation in which on-site decentralized treatment for DTP wastewater is implemented. The second scenario resulted in significant improvements, including reduced energy consumption (- 15%), reduced greenhouse gases emission, elimination of external carbon source for completing denitrification at centralized WWTP and reduced sludge production (- 25%).


Asunto(s)
Nitrógeno , Aguas Residuales , Amoníaco , Reactores Biológicos , Desnitrificación , Oxidación-Reducción , Evaluación de Procesos, Atención de Salud , Aguas del Alcantarillado , Textiles
4.
Water Res ; 54: 337-46, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24583525

RESUMEN

Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production.


Asunto(s)
Residuos Industriales/análisis , Aguas del Alcantarillado/microbiología , Textiles , Aguas Residuales/microbiología , Purificación del Agua/métodos , Aerobiosis , Técnicas de Cultivo Celular por Lotes , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Reactores Biológicos/microbiología , Filtración/instrumentación , Hibridación Fluorescente in Situ , Italia
5.
N Biotechnol ; 29(1): 9-16, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21558025

RESUMEN

Textile wastewater is difficult to treat as it usually contains considerable amounts of different pollutants, which are often recalcitrant, toxic and inhibitory. Therefore, complex treatment schemes based on the sequence of various steps are usually required for an effective treatment. This explains why textile effluents are often treated in centralized plants and sometimes mixed with municipal wastewater. The adoption of new technologies for on-site treatment, instead, would be optimal, deeply reducing treatment costs. An innovative technology exhibiting several characteristics appropriate for the attainment of such a goal is sequencing batch biofilter granular reactor (SBBGR). To assess the suitability of this technology, two lab-scale reactors were operated, treating mixed municipal-textile wastewater and a pure textile effluent, respectively. Results have demonstrated that mixed wastewater can be successfully treated with very low hydraulic retention times (less than 10 hours). Furthermore, SBBGR shows to be an effective pre-treatment for textile wastewater for discharge into sewer systems. The economic evaluation of the process showed operative costs of 0.10 and 0.19 € per m(3) of mixed wastewater and textile wastewater, respectively.


Asunto(s)
Reactores Biológicos , Residuos Industriales , Industria Textil , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/economía , Contaminantes del Agua/química , Purificación del Agua/economía , Purificación del Agua/instrumentación , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA