RESUMEN
Historically, our understanding of molecular genetic aspects of human germ cell development has been limited, at least in part due to inaccessibility of early stages of human development to experimentation. However, the derivation of pluripotent stem cells may provide the necessary human genetic system to study germ cell development. In this study, we compared the potential of human induced pluripotent stem cells (iPSCs), derived from adult and fetal somatic cells to form primordial and meiotic germ cells, relative to human embryonic stem cells. We found that â¼5% of human iPSCs differentiated to primordial germ cells (PGCs) following induction with bone morphogenetic proteins. Furthermore, we observed that PGCs expressed green fluorescent protein from a germ cell-specific reporter and were enriched for the expression of endogenous germ cell-specific proteins and mRNAs. In response to the overexpression of intrinsic regulators, we also observed that iPSCs formed meiotic cells with extensive synaptonemal complexes and post-meiotic haploid cells with a similar pattern of ACROSIN staining as observed in human spermatids. These results indicate that human iPSCs derived from reprogramming of adult somatic cells can form germline cells. This system may provide a useful model for molecular genetic studies of human germline formation and pathology and a novel platform for clinical studies and potential therapeutical applications.
Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Germinativas/citología , Células Madre Pluripotentes Inducidas/citología , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Línea Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Haploidia , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Complejo Sinaptonémico/metabolismoRESUMEN
Whether signal transduction pathways regulate epigenetic states in response to environmental cues remains poorly understood. We demonstrate here that Smad3, signaling downstream of transforming growth factor beta, interacts with the zinc finger domain of CCCTC-binding factor (CTCF), a nuclear protein known to act as "the master weaver of the genome." This interaction occurs via the Mad homology 1 domain of Smad3. Although Smad2 and Smad4 fail to interact, an alternatively spliced form of Smad2 lacking exon 3 interacts with CTCF. CTCF does not perturb well established transforming growth factor beta gene responses. However, Smads and CTCF co-localize to the H19 imprinting control region (ICR), which emerges as an insulator in cis and regulator of transcription and replication in trans via direct CTCF binding to the ICR. Smad recruitment to the ICR requires intact CTCF binding to this locus. Smad2/3 binding to the ICR requires Smad4, which potentially provides stability to the complex. Because the CTCF-Smad complex is not essential for the chromatin insulator function of the H19 ICR, we propose that it can play a role in chromatin cross-talk organized by the H19 ICR.
Asunto(s)
Cromatina/metabolismo , Proteínas Represoras/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Animales , Animales Recién Nacidos , Factor de Unión a CCCTC , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Cromatina/genética , Inmunoprecipitación de Cromatina , Femenino , Expresión Génica/efectos de los fármacos , Impresión Genómica/genética , Células Hep G2 , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Unión Proteica/efectos de los fármacos , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Smad/genética , Proteína smad3/genética , Proteína smad3/metabolismo , TransfecciónRESUMEN
BACKGROUND: Both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) bear a great potential in regenerative medicine. In addition to optimized clinical grade culture conditions, efficient clinical grade cryopreservation methods for these cells are needed. Obtaining good survival after thawing has been problematic. METHODS: We used a novel, chemically defined effective xeno-free cryopreservation system for cryostorage and banking of hESCs and iPSCs. The earlier established slow freezing protocols have, even after recent improvements, resulted in low viability and thawed cells had a high tendency to differentiate. The medium is a completely serum and animal substance free product containing dimethylsulfoxide, anhydrous dextrose and a polymer as cryoprotectants. The cells were directly frozen at -70 degrees C, without a programmed freezer. RESULTS: The number of frozen colonies versus the number of surviving colonies differed significantly for both HS293 (chi(2) = 9.616 with one degree of freedom and two-tailed P = 0.0019) and HS306 (chi(2) = 8.801 with one degree of freedom and two-tailed P = 0.0030). After thawing, the cells had a high viability (90-96%) without any impact on proliferation and differentiation, compared with the standard freezing procedure where viability was much lower (49%). The frozen-thawed hESCs and iPSCs had normal karyotype and maintained properties of pluripotent cells with corresponding morphological characteristics, and expressed pluripotency markers after 10 passages in culture. They formed teratomas containing tissue components of the three germ layers. CONCLUSION: The defined freezing-thawing system described here offers an excellent simple option for banking of hESCs and iPSCs.
Asunto(s)
Criopreservación/métodos , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Secuencia de Bases , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Ensayo de Unidades Formadoras de Colonias , Crioprotectores , Medio de Cultivo Libre de Suero , Cartilla de ADN/genética , Dimetilsulfóxido , Células Madre Embrionarias/metabolismo , Expresión Génica , Glucosa , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Inmunohistoquímica , Técnicas In Vitro , Cariotipificación , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Reacción en Cadena de la Polimerasa , Polímeros , ARN Mensajero/genética , ARN Mensajero/metabolismo , Teratoma/etiologíaRESUMEN
CTCF is a transcription factor with highly versatile functions ranging from gene activation and repression to the regulation of insulator function and imprinting. Although many of these functions rely on CTCF-DNA interactions, it is an emerging realization that CTCF-dependent molecular processes involve CTCF interactions with other proteins. In this study, we report the association of a subpopulation of CTCF with the RNA polymerase II (Pol II) protein complex. We identified the largest subunit of Pol II (LS Pol II) as a protein significantly colocalizing with CTCF in the nucleus and specifically interacting with CTCF in vivo and in vitro. The role of CTCF as a link between DNA and LS Pol II has been reinforced by the observation that the association of LS Pol II with CTCF target sites in vivo depends on intact CTCF binding sequences. "Serial" chromatin immunoprecipitation (ChIP) analysis revealed that both CTCF and LS Pol II were present at the beta-globin insulator in proliferating HD3 cells but not in differentiated globin synthesizing HD3 cells. Further, a single wild-type CTCF target site (N-Myc-CTCF), but not the mutant site deficient for CTCF binding, was sufficient to activate the transcription from the promoterless reporter gene in stably transfected cells. Finally, a ChIP-on-ChIP hybridization assay using microarrays of a library of CTCF target sites revealed that many intergenic CTCF target sequences interacted with both CTCF and LS Pol II. We discuss the possible implications of our observations with respect to plausible mechanisms of transcriptional regulation via a CTCF-mediated direct link of LS Pol II to the DNA.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Genoma Humano , ARN Polimerasa II/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Neoplasias de la Mama/patología , Factor de Unión a CCCTC , Línea Celular Tumoral , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/química , Genes Reporteros , Células HeLa , Humanos , Inmunohistoquímica , Células K562 , Ratones , Células 3T3 NIH , Análisis de Secuencia por Matrices de Oligonucleótidos , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/genética , Proteínas Represoras/química , TransfecciónRESUMEN
BACKGROUND: Feeder cells are frequently used for the early-stage of derivation and culture of human embryonic stem cell (hESC) lines. METHODS: We established a conditionally immortalized human foreskin fibroblast line that secreted basic fibroblast growth factor (bFGF). These cells were used as feeder cells for hESC culture and induced pluripotent stem (iPS) cell derivation and expansion. This conditional immortalization was performed using lentiviral vector (LV) mediated transduction of Bmi-1 and human telomerase reverse transcriptase genes and the resulting cell line was further modified by LV-mediated transduction of a secreted form of bFGF gene product. Three different laboratories have tested whether this feeder cell line could support the maintenance of four different hESC lines. RESULTS: Immortalized fibroblasts secreting stable amounts of bFGF supported the growth of all hESC lines, which remained pluripotent and had a normal karyotype for at least 10 passages. Even at high passage (p56), these modified cells, when used as feeders, could support iPS derivation and propagation. Derived iPS cells expressed pluripotency markers, had hESC morphology and produced tissue components of the three germ layers when differentiated in vitro. CONCLUSION: These modified fibroblasts are useful as a genetically-defined feeder cell line for reproducible and cost-effective culture of both hESC and iPS cells.
Asunto(s)
Técnicas de Cultivo de Célula , Línea Celular , Células Madre Embrionarias/fisiología , Fibroblastos/citología , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Técnicas de Cocultivo , Humanos , Cariotipificación , Lentivirus/genética , RatonesRESUMEN
Transforming growth factors beta (TGF-betas) inhibit growth of epithelial cells and induce differentiation changes, such as epithelial-mesenchymal transition (EMT). On the other hand, bone morphogenetic proteins (BMPs) weakly affect epithelial cell growth and do not induce EMT. Smad4 transmits signals from both TGF-beta and BMP pathways. Stimulation of Smad4-deficient epithelial cells with TGF-beta 1 or BMP-7 in the absence or presence of exogenous Smad4, followed by cDNA microarray analysis, revealed 173 mostly Smad4-dependent, TGF-beta-, or BMP-responsive genes. Among 25 genes coregulated by both factors, inhibitors of differentiation Id2 and Id3 showed long-term repression by TGF-beta and sustained induction by BMP. The opposing regulation of Id genes is critical for proliferative and differentiation responses. Hence, ectopic Id2 or Id3 expression renders epithelial cells refractory to growth inhibition and EMT induced by TGF-beta, phenocopying the BMP response. Knockdown of endogenous Id2 or Id3 sensitizes epithelial cells to BMP, leading to robust growth inhibition and induction of transdifferentiation. Thus, Id genes sense Smad signals and create a permissive or refractory nuclear environment that defines decisions of cell fate and proliferation.
Asunto(s)
Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Neoplasias/genética , Proteínas Represoras , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/farmacología , Animales , Secuencia de Bases , Proteína Morfogenética Ósea 7 , Diferenciación Celular/genética , Diferenciación Celular/fisiología , División Celular/genética , División Celular/fisiología , Línea Celular , ADN Complementario/genética , Proteínas de Unión al ADN/fisiología , Epitelio/efectos de los fármacos , Epitelio/fisiología , Humanos , Proteína 2 Inhibidora de la Diferenciación , Proteínas Inhibidoras de la Diferenciación , Mesodermo/efectos de los fármacos , Mesodermo/fisiología , Ratones , Familia de Multigenes , Proteínas de Neoplasias/fisiología , Transducción de Señal , Proteína Smad4 , Transactivadores/genética , Transactivadores/fisiología , Factores de Transcripción/fisiologíaRESUMEN
Stem cell culture systems that rely on undefined animal-derived components introduce variability to the cultures and complicate their therapeutic use. The derivation of human embryonic stem cells and the development of methods to produce induced pluripotent stem cells combined with their potential to treat human diseases have accelerated the drive to develop xenogenic-free, chemically defined culture systems that support pluripotent self-renewal and directed differentiation. In this chapter, we describe four xeno-free culture systems that have been successful in supporting undifferentiated growth of hPSCs as well as methods for xeno-free subculture and cryopreservation of hPSCs. Each culture system consists of a xeno-free growth medium and xeno-free substratum: (1) TeSR2™ with human recombinant laminin (LN-511); (2) NutriStem™ with LN-511; (3) RegES™ with human foreskin fibroblasts (hFFs); (4) KO-SR Xeno-Free™/GF cocktail with CELLstart™ matrix.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/citología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Criopreservación , Medios de Cultivo/farmacología , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Laminina/farmacología , Células Madre Pluripotentes/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismoRESUMEN
We have derived 30 human embryonic stem cell lines from supernumerary blastocysts in our laboratory. During the derivation process, we have studied new and safe method to establish good quality lines. All our human embryonic stem cell lines have been derived using human foreskin fibroblasts as feeder cells. The 26 more recent lines were derived in a medium containing serum replacement instead of fetal calf serum. Mechanical isolation of the inner cell mass using flexible metal needles was used in deriving the 10 latest lines. The lines are karyotypically normal, but culture adaptation in two lines has been observed. Our human embryonic stem cell lines are banked, and they are available for researchers.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/normas , Células Madre Embrionarias/citología , Línea Celular , Forma de la Célula , Ensayo de Unidades Formadoras de Colonias , Humanos , Inmunohistoquímica , Masculino , SueciaRESUMEN
BACKGROUND: The large number (30) of permanent human embryonic stem cell (hESC) lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002-2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. METHODS: We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. RESULTS: Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM) was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN) zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. CONCLUSION: Even very poor quality embryos with few cells in the ICM can give origin to hESC lines.
Asunto(s)
Células Madre Embrionarias/citología , Investigación con Células Madre , Animales , Blastocisto/citología , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo , Técnicas de Cultivo de Embriones/métodos , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Cariotipificación , Masculino , Ratones , Ratones SCID , Análisis de RegresiónRESUMEN
Asynchronous replication during S phase is a universal characteristic of genomically imprinted genes. Replication timing in imprinted domains is determined epigenetically, as it is parent of origin specific, and is seen in the absence of sequence divergence between the two alleles. At the imprinted H19/Igf2 domain, the methylated paternal allele replicates early while the CTCF-bound maternal allele replicates late during S phase. CTCF regulates the allele-specific epigenetic characteristics of this domain, including methylation, transcription and chromosome conformation. Here we show that maternal, but not paternal inheritance of a mutated H19 imprinting control region, lacking functional CTCF binding sites, underlies a late to early switch in replication timing of the maternal H19/Igf2 domain.