Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am Nat ; 180(5): 655-70, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23070325

RESUMEN

Phenology affects the abiotic and biotic conditions that an organism encounters and, consequently, its fitness. For populations of high-latitude species, spring phenology often occurs earlier in warmer years and regions. Here we apply a novel approach, a comparison of slope of phenology on temperature over space versus over time, to identify the relative roles of plasticity and local adaptation in generating spatial phenological variation in three interacting species, a butterfly, Anthocharis cardamines, and its two host plants, Cardamine pratensis and Alliaria petiolata. All three species overlap in the time window over which mean temperatures best predict variation in phenology, and we find little evidence that a day length requirement causes the sensitive time window to be delayed as latitude increases. The focal species all show pronounced temperature-mediated phenological plasticity of similar magnitude. While we find no evidence for local adaptation in the flowering times of the plants, geographic variation in the phenology of the butterfly is consistent with countergradient local adaptation. The butterfly's phenology appears to be better predicted by temperature than it is by the flowering times of either host plant, and we find no evidence that coevolution has generated geographic variation in adaptive phenological plasticity.


Asunto(s)
Adaptación Fisiológica , Brassicaceae/fisiología , Mariposas Diurnas/fisiología , Cardamine/fisiología , Animales , Temperatura , Factores de Tiempo
2.
Biol Lett ; 6(5): 575-8, 2010 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-20484232

RESUMEN

The workshop 'Spatial models in animal ecology, management and conservation' held at Silwood Park (UK), 9-11 March 2010, aimed to synthesize recent progress in modelling the spatial dynamics of individuals, populations and species ranges and to provide directions for research. It brought together marine and terrestrial researchers working on spatial models at different levels of organization, using empirical as well as theory-driven approaches. Different approaches, temporal and spatial scales, and practical constraints predominate at different levels of organization and in different environments. However, there are theoretical concepts and specific methods that can fruitfully be transferred across levels and systems, including: habitat suitability characterization, movement rules, and ways of estimating uncertainty.


Asunto(s)
Biodiversidad , Ecosistema
3.
Nat Ecol Evol ; 1(11): 1785, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29046563

RESUMEN

In this Article originally published, owing to a technical error, the author 'Laurent Chirio' was mistakenly designated as a corresponding author in the HTML version, the PDF was correct. This error has now been corrected in the HTML version. Further, in Supplementary Table 3, the authors misspelt the surname of 'Danny Meirte'; this file has now been replaced.

4.
Nat Ecol Evol ; 1(11): 1677-1682, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28993667

RESUMEN

The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world's arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently.


Asunto(s)
Distribución Animal , Biodiversidad , Conservación de los Recursos Naturales , Reptiles , Animales
5.
PLoS One ; 8(6): e65427, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950785

RESUMEN

Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%), 670-933 amphibian (11-15%), and 47-73 coral species (6-9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts.


Asunto(s)
Anfibios/fisiología , Antozoos/fisiología , Aves/fisiología , Cambio Climático , Aclimatación , Animales , Biodiversidad , Conservación de los Recursos Naturales/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA