Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 19(7): e1011185, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37432974

RESUMEN

Mammalian DNA folds into 3D structures that facilitate and regulate genetic processes such as transcription, DNA repair, and epigenetics. Several insights derive from chromosome capture methods, such as Hi-C, which allow researchers to construct contact maps depicting 3D interactions among all DNA segment pairs. These maps show a complex cross-scale organization spanning megabase-pair compartments to short-ranged DNA loops. To better understand the organizing principles, several groups analyzed Hi-C data assuming a Russian-doll-like nested hierarchy where DNA regions of similar sizes merge into larger and larger structures. Apart from being a simple and appealing description, this model explains, e.g., the omnipresent chequerboard pattern seen in Hi-C maps, known as A/B compartments, and foreshadows the co-localization of some functionally similar DNA regions. However, while successful, this model is incompatible with the two competing mechanisms that seem to shape a significant part of the chromosomes' 3D organization: loop extrusion and phase separation. This paper aims to map out the chromosome's actual folding hierarchy from empirical data. To this end, we take advantage of Hi-C experiments and treat the measured DNA-DNA interactions as a weighted network. From such a network, we extract 3D communities using the generalized Louvain algorithm. This algorithm has a resolution parameter that allows us to scan seamlessly through the community size spectrum, from A/B compartments to topologically associated domains (TADs). By constructing a hierarchical tree connecting these communities, we find that chromosomes are more complex than a perfect hierarchy. Analyzing how communities nest relative to a simple folding model, we found that chromosomes exhibit a significant portion of nested and non-nested community pairs alongside considerable randomness. In addition, by examining nesting and chromatin types, we discovered that nested parts are often associated with active chromatin. These results highlight that cross-scale relationships will be essential components in models aiming to reach a deep understanding of the causal mechanisms of chromosome folding.


Asunto(s)
Cromatina , Cromosomas , Animales , Cromosomas/genética , Cromatina/genética , ADN/genética , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Mamíferos/genética
2.
Sci Rep ; 13(1): 12979, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563218

RESUMEN

To better understand DNA's 3D folding in cell nuclei, researchers developed chromosome capture methods such as Hi-C that measure the contact frequencies between all DNA segment pairs across the genome. As Hi-C data sets often are massive, it is common to use bioinformatics methods to group DNA segments into 3D regions with correlated contact patterns, such as Topologically associated domains and A/B compartments. Recently, another research direction emerged that treats the Hi-C data as a network of 3D contacts. In this representation, one can use community detection algorithms from complex network theory that group nodes into tightly connected mesoscale communities. However, because Hi-C networks are so densely connected, several node partitions may represent feasible solutions to the community detection problem but are indistinguishable unless including other data. Because this limitation is a fundamental property of the network, this problem persists regardless of the community-finding or data-clustering method. To help remedy this problem, we developed a method that charts the solution landscape of network partitions in Hi-C data from human cells. Our approach allows us to scan seamlessly through the scales of the network and determine regimes where we can expect reliable community structures. We find that some scales are more robust than others and that strong clusters may differ significantly. Our work highlights that finding a robust community structure hinges on thoughtful algorithm design or method cross-evaluation.


Asunto(s)
Cromosomas , Genoma , Humanos , Cromosomas/genética , Núcleo Celular , Biología Computacional/métodos , ADN , Cromatina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA