Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 2054, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136154

RESUMEN

Monitoring new mutations in SARS-CoV-2 provides crucial information for identifying diagnostic and therapeutic targets and important insights to achieve a more effective COVID-19 control strategy. Next generation sequencing (NGS) technologies have been widely used for whole genome sequencing (WGS) of SARS-CoV-2. While various NGS methods have been reported, one chief limitation has been the complexity of the workflow, limiting the scalability. Here, we overcome this limitation by designing a laboratory workflow optimized for high-throughput studies. The workflow utilizes modified ARTIC network v3 primers for SARS-CoV-2 whole genome amplification. NGS libraries were prepared by a 2-step PCR method, similar to a previously reported tailed PCR method, with further optimizations to improve amplicon balance, to minimize amplicon dropout for viral genomes harboring primer-binding site mutation(s), and to integrate robotic liquid handlers. Validation studies demonstrated that the optimized workflow can process up to 2688 samples in a single sequencing run without compromising sensitivity and accuracy and with fewer amplicon dropout events compared to the standard ARTIC protocol. We additionally report results for over 65,000 SARS-CoV-2 whole genome sequences from clinical specimens collected in the United States between January and September of 2021, as part of an ongoing national genomics surveillance effort.


Asunto(s)
COVID-19/genética , Genoma Viral , Mutación , SARS-CoV-2/genética , Secuenciación Completa del Genoma , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA