Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36747791

RESUMEN

Chimeric antigen receptor (CAR) engineered T cells often fail to enact effector functions after infusion into patients. Understanding the biological pathways that lead CAR T cells to failure is of critical importance in the design of more effective therapies. We developed and validated an in vitro model that drives T cell dysfunction through chronic CAR activation and interrogated how CAR costimulatory domains contribute to T cell failure. We found that dysfunctional CD28-based CARs targeting CD19 bear hallmarks of classical T cell exhaustion while dysfunctional 41BB-based CARs are phenotypically, transcriptionally and epigenetically distinct. We confirmed activation of this unique transcriptional program in CAR T cells that failed to control clinical disease. Further, we demonstrate that 41BB-dependent activation of the transcription factor FOXO3 is a significant contributor to this dysfunction and disruption of FOXO3 improves CAR T cell function. These findings identify that chronic activation of 41BB leads to novel state of T cell dysfunction that can be alleviated by genetic modification of FOXO3. Summary: Chronic stimulation of CARs containing the 41BB costimulatory domain leads to a novel state of T cell dysfunction that is distinct from T cell exhaustion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA