Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int Rev Psychiatry ; 33(7): 617-625, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33496204

RESUMEN

Counseling parents to reduce access to firearms and other potentially lethal suicide methods is commonly known as lethal means counseling (LMC). The current study explores the experiences that emergency department-based behavioural health clinicians described having as they provided lethal means counseling to parents of adolescents at risk for suicide. Clinicians were purposively sampled from four hospital networks in Colorado after their hospitals adopted LMC protocols as part of an intervention that also included online training in LMC and provision of free medication and firearm lockboxes. Twenty-three clinicians were interviewed using semi-structured interviews. Data were analysed using a modified grounded theory-based approach. Clinicians felt more comfortable and effective in their abilities to provide LMC after the intervention. Clinicians also described how being able to offer free storage devices helped them engage in LMC. In advising parents to make guns and medications inaccessible to their at-risk child, most clinicians pointed to at least one of three research findings highlighted in the online training: (1) Suicide attempts with guns rarely afford second chances, (2) medication overdoses can kill, (3) suicidal behaviour is always unpredictable and often impulsive. All clinicians described a desire to continue LMC as currently protocolized at their hospital after the study ended.


Asunto(s)
Armas de Fuego , Adolescente , Cuidadores , Niño , Consejo , Servicio de Urgencia en Hospital , Humanos , Ideación Suicida
2.
Data Brief ; 42: 108080, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35434219

RESUMEN

Optical microscopy images and confocal data for Aerosol Jet Printed (AJP) lines over a 16 hour print duration is provide in this dataset ("Mapping Drift in Morphology and Electrical Performance in Aerosol Jet Printing" [1]). Lines were uninterruptedly printed by AJP on a glass substrate using silver nanoparticle ink over a 16-hour time frame. The ink used for this experiment was a 0.6:0.3:0.2 mL mixture of Clariant Prelect TPS 50 G2 silver nanoparticle ink, ethylene glycol, and deionized water, respectively. Deposition was achieved with an Optomec AJ 300-UP Aerosol JetTM Deposition System using a Sprint Series Ultrasonic Atomizer MAX, aerodynamic filtering, and a nozzle having an orifice diameter of 150 µm. The typical focus ratio of 1.75 within standard range was used. The optical microscopic images of 350 µm AJP printed lines at 80 different time points were then selectively collected. Keyence VK-X200 with 150x magnification was used, which provided 50 µm to 267 pixel resolution image with more than 1000 cross-sections at each time point. Filtering of the pixels with outlying heights was performed with a multi-file analyzer. The dataset was primarily collected to understand system-level, temporal drifts in print morphology, which would further allow to predict electrical performance in time domain. Additional purposes for the dataset include: 1) benchmark dataset for morphology and print performance between AJP systems and print settings, 2) test data for new image filtering, segmentation, and classification algorithms and 3) baseline training data for real-time, in situ classification of operational time windows for AJP feedback control.

3.
ACS Appl Mater Interfaces ; 13(23): 27364-27371, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34077196

RESUMEN

Polyimides are widely utilized engineering polymers due to their excellent balance of mechanical, dielectric, and thermal properties. However, the manufacturing of polyimides into complex multifunctional designs can be hindered by dimensional shrinkage of the polymer upon imidization and post processing methods and inability to tailor electronic or mechanical properties. In this work, we developed methods to three-dimensional (3D) direct ink write polyimide closed-cell stochastic foams with tunable densities. These polyimide structures preserve the geometrical fidelity of 3D design with a linear shrinkage value of <10% and displayed microscale porosity ranging from 25 to 35%. This unique balance of morphology and direct-write compatibility was enabled by polymer phase inversion behavior without the need of conventional post-print cross-linking, imidization, or pore-inducing freeze processing. The manufacturability, thermal stability, and dielectric properties of the 3D polyimide stochastic foams reported here serve as enablers for the exploration of hierarchical, lightweight, high-temperature, high-power electronics.

4.
Data Brief ; 33: 106331, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33088870

RESUMEN

In fabricating electronic components or devices via Aerosol Jet Printing (AJP) there are numerous options for commercially available Metal NanoParticle (MNP) inks. Regardless of the MNP ink selected, the electrical properties of the final product are not commensurate to those of the bulk metal due to the inherent porosity and impurity-infused composition that is characteristic of these heterogeneous feedstock. Hence, choosing the best MNP ink for a particular application can be difficult, even among those based on the same metal, as each ink formulation can yield different performance metrics depending on the specific formulation and the conditions under which it is processed. In this article, the DC conductivity of AJP pads and the Radio Frequency (RF) transmission loss of AJP Coplanar Waveguides (CPWs) are presented for three different, commercially available silver MNP inks; Advanced Nano Products (ANP) Silverjet DGP 40LT-15C, Clariant Prelect TPS 50 G2, and UT Dots UTDAg40X. We determined conductivity values by measuring the printed pad thicknesses using stylus profilometry and measuring sheet resistances using a co-linear 4-point probe. Additionally, we collected RF spectra using a performance network analyzer over the 10 MHz - 40 GHz range. A complete description of the preparation, AJP procedure, and sintering is provided. Conductivity and RF data are presented for several scenarios including sintering temperatures, sintering atmospheres, and un-sintered storage conditions. We anticipate this dataset will serve as a useful reference for benchmarking electrical performance and troubleshooting pre- and post-processing steps for Ag nanoparticle based AJP inks.

5.
Adv Mater ; 30(35): e1802438, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30009428

RESUMEN

Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidirectional nonlinear deformation to mechanical loads. A methodology is presented to realize surface-templated homeotropic orientation in LCEs and omnidirectional nonlinearity in mechanical deformation. Inkjet printing of the homeotropic alignment surface localizes regions of homeotropic and planar orientation within a monolithic LCE element. The local control of the self-assembly and orientation of the LCE, when subject to rational design, yield functional materials continuous in composition with discontinuous mechanical deformation. The variation in mechanical deformation in the film can enable the realization of nontrivial performance. For example, a patterned LCE is prepared and shown to exhibit a near-zero Poisson's ratio. Further, it is demonstrated that the local control of deformation can enable the fabrication of rugged, flexible electronic devices. An additively manufactured device withstands complex mechanical deformations that would normally cause catastrophic failure.

6.
ACS Appl Mater Interfaces ; 8(1): 16-9, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26699653

RESUMEN

Tandem solar cell architectures are designed to improve device photoresponse by enabling the capture of wider range of solar spectrum as compared to single-junction device. However, the practical realization of this concept in bulk-heterojunction polymer systems requires the judicious design of a transparent interconnecting layer compatible with both polymers. Moreover, the polymers selected should be readily synthesized at large scale (>1 kg) and high performance. In this work, we demonstrate a novel tandem polymer solar cell that combines low band gap poly isoindigo [P(T3-iI)-2], which is easily synthesized in kilogram quantities, with a novel Cr/MoO3 interconnecting layer. Cr/MoO3 is shown to be greater than 80% transparent above 375 nm and an efficient interconnecting layer for P(T3-iI)-2 and PCDTBT, leading to 6% power conversion efficiencies under AM 1.5G illumination. These results serve to extend the range of interconnecting layer materials for tandem cell fabrication by establishing, for the first time, that a thin, evaporated layer of Cr/MoO3 can work as an effective interconnecting layer in a tandem polymer solar cells made with scalable photoactive materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA