Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 173(2): 485-498.e11, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576455

RESUMEN

Understanding how complex brain wiring is produced during development is a daunting challenge. In Drosophila, information from 800 retinal ommatidia is processed in distinct brain neuropiles, each subdivided into 800 matching retinotopic columns. The lobula plate comprises four T4 and four T5 neuronal subtypes. T4 neurons respond to bright edge motion, whereas T5 neurons respond to dark edge motion. Each is tuned to motion in one of the four cardinal directions, effectively establishing eight concurrent retinotopic maps to support wide-field motion. We discovered a mode of neurogenesis where two sequential Notch-dependent divisions of either a horizontal or a vertical progenitor produce matching sets of two T4 and two T5 neurons retinotopically coincident with pairwise opposite direction selectivity. We show that retinotopy is an emergent characteristic of this neurogenic program and derives directly from neuronal birth order. Our work illustrates how simple developmental rules can implement complex neural organization.


Asunto(s)
Drosophila/fisiología , Percepción de Movimiento/fisiología , Retina/fisiología , Animales , Proteínas de Drosophila/metabolismo , Locomoción/fisiología , Modelos Neurológicos , Neuronas/fisiología , Lóbulo Óptico de Animales no Mamíferos/química , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Receptores Notch/metabolismo , Retina/citología , Vías Visuales
2.
Cell ; 158(5): 1173-1186, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171415

RESUMEN

Temporal patterning of neural progenitors is one of the core mechanisms generating neuronal diversity in the central nervous system. Here, we show that, in the tips of the outer proliferation center (tOPC) of the developing Drosophila optic lobes, a unique temporal series of transcription factors not only governs the sequential production of distinct neuronal subtypes but also controls the mode of progenitor division, as well as the selective apoptosis of Notch(OFF) or Notch(ON) neurons during binary cell fate decisions. Within a single lineage, intermediate precursors initially do not divide and generate only one neuron; subsequently, precursors divide, but their Notch(ON) progeny systematically die through Reaper activity, whereas later, their Notch(OFF) progeny die through Hid activity. These mechanisms dictate how the tOPC produces neurons for three different optic ganglia. We conclude that temporal patterning generates neuronal diversity by specifying both the identity and survival/death of each unique neuronal subtype.


Asunto(s)
Supervivencia Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Neurogénesis , Neuropéptidos/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Receptores Notch/metabolismo , Animales , Apoptosis , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Células-Madre Neurales , Lóbulo Óptico de Animales no Mamíferos/metabolismo
3.
Nature ; 541(7637): 365-370, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28077877

RESUMEN

In the Drosophila optic lobes, 800 retinotopically organized columns in the medulla act as functional units for processing visual information. The medulla contains over 80 types of neuron, which belong to two classes: uni-columnar neurons have a stoichiometry of one per column, while multi-columnar neurons contact multiple columns. Here we show that combinatorial inputs from temporal and spatial axes generate this neuronal diversity: all neuroblasts switch fates over time to produce different neurons; the neuroepithelium that generates neuroblasts is also subdivided into six compartments by the expression of specific factors. Uni-columnar neurons are produced in all spatial compartments independently of spatial input; they innervate the neuropil where they are generated. Multi-columnar neurons are generated in smaller numbers in restricted compartments and require spatial input; the majority of their cell bodies subsequently move to cover the entire medulla. The selective integration of spatial inputs by a fixed temporal neuroblast cascade thus acts as a powerful mechanism for generating neural diversity, regulating stoichiometry and the formation of retinotopy.


Asunto(s)
Tipificación del Cuerpo , Diferenciación Celular , Drosophila melanogaster/citología , Neurogénesis , Neuronas/citología , Lóbulo Óptico de Animales no Mamíferos/citología , Animales , Tipificación del Cuerpo/genética , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Movimiento Celular , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Masculino , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Neurópilo/citología , Neurópilo/metabolismo , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Pupa/citología , Pupa/genética , Pupa/crecimiento & desarrollo , Análisis Espacio-Temporal , Factores de Tiempo
4.
Nature ; 498(7455): 456-62, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23783517

RESUMEN

In the Drosophila optic lobes, the medulla processes visual information coming from inner photoreceptors R7 and R8 and from lamina neurons. It contains approximately 40,000 neurons belonging to more than 70 different types. Here we describe how precise temporal patterning of neural progenitors generates these different neural types. Five transcription factors-Homothorax, Eyeless, Sloppy paired, Dichaete and Tailless-are sequentially expressed in a temporal cascade in each of the medulla neuroblasts as they age. Loss of Eyeless, Sloppy paired or Dichaete blocks further progression of the temporal sequence. We provide evidence that this temporal sequence in neuroblasts, together with Notch-dependent binary fate choice, controls the diversification of the neuronal progeny. Although a temporal sequence of transcription factors had been identified in Drosophila embryonic neuroblasts, our work illustrates the generality of this strategy, with different sequences of transcription factors being used in different contexts.


Asunto(s)
Encéfalo/citología , Diferenciación Celular , Linaje de la Célula , Drosophila melanogaster/citología , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/metabolismo , Femenino , Regulación de la Expresión Génica , Masculino , Células-Madre Neurales/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Vías Visuales/citología
5.
Development ; 136(24): 4199-212, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19934015

RESUMEN

Tissue morphogenesis requires stereotyped cell shape changes, such as apical cell constriction in the mesoderm and cell intercalation in the ventrolateral ectoderm of Drosophila. Both processes require force generation by an actomyosin network. The subcellular localization of Myosin-II (Myo-II) dictates these different morphogenetic processes. In the intercalating ectoderm Myo-II is mostly cortical, but in the mesoderm Myo-II is concentrated in a medial meshwork. We report that apical constriction is repressed by JAK/STAT signalling in the lateral ectoderm independently of Twist. Inactivation of the JAK/STAT pathway causes germband extension defects because of apical constriction ventrolaterally. This is associated with ectopic recruitment of Myo-II in a medial web, which causes apical cell constriction as shown by laser nanosurgery. Reducing Myo-II levels rescues the JAK/STAT mutant phenotype, whereas overexpression of the Myo-II heavy chain (also known as Zipper), or constitutive activation of its regulatory light chain, does not cause medial accumulation of Myo-II nor apical constriction. Thus, JAK/STAT controls Myo-II localization by additional mechanisms. We show that regulation of actin polymerization by Wasp, but not by Dia, is important in this process. Constitutive activation of Wasp, a branched actin regulator, causes apical cell constriction and promotes medial 'web' formation. Wasp is inactivated at the cell cortex in the germband by JAK/STAT signalling. Lastly, wasp mutants rescue the normal cortical enrichment of Myo-II and inhibit apical constriction in JAK/STAT mutants, indicating that Wasp is an effector of JAK/STAT signalling in the germband. We discuss possible models for the role of Wasp activity in the regulation of Myo-II distribution.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/fisiología , Células Epiteliales , Transducción de Señal , Proteína del Síndrome de Wiskott-Aldrich/fisiología , Actomiosina/metabolismo , Animales , Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Drosophila/embriología , Proteínas de Drosophila/antagonistas & inhibidores , Ectodermo/embriología , Ectodermo/fisiología , Células Epiteliales/citología , Células Epiteliales/fisiología , Quinasas Janus/fisiología , Mesodermo/embriología , Mesodermo/fisiología , Morfogénesis/fisiología , Miosina Tipo II/fisiología , Factores de Transcripción STAT/fisiología , Proteína del Síndrome de Wiskott-Aldrich/antagonistas & inhibidores
6.
iScience ; 25(10): 105102, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185360

RESUMEN

After demyelinating insult, the neuronal progenitors of the adult mouse sub-ventricular zone (SVZ) called neuroblasts convert into oligodendrocytes that participate to the remyelination process. We use this rare example of spontaneous fate conversion to identify the molecular mechanisms governing these processes. Using in vivo cell lineage and single cell RNA-sequencing, we demonstrate that SVZ neuroblasts fate conversion proceeds through formation of a non-proliferating transient cellular state co-expressing markers of both neuronal and oligodendrocyte identities. Transition between the two identities starts immediately after demyelination and occurs gradually, by a stepwise upregulation/downregulation of key TFs and chromatin modifiers. Each step of this fate conversion involves fine adjustments of the transcription and translation machineries as well as tight regulation of metabolism and migratory behaviors. Together, these data constitute the first in-depth analysis of a spontaneous cell fate conversion in the adult mammalian CNS.

7.
Semin Cell Dev Biol ; 20(8): 1006-13, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19486946

RESUMEN

Planar cell polarity is a common and probably universal feature of epithelial cells throughout their life. It is not only visible in the external parts of adult animals and plants, but also present in newborn cells such as in the primary Drosophila epithelium. It controls not only cell shape and differentiation, but also cell motility, cell shape changes and it directs how animals are shaped. In this review, we report how planar cell polarity arises in Drosophila embryos and thereby illustrate how general and extensive planar polarity is during development, from the very beginning to the end. We present the main features of planar cell polarization in Drosophila embryos, in particular the fact that it occurs over a short range of just a few cell diameters, and within a very short time window. We contrast these with other systems, such as the adult Drosophila wing where planar cell polarity occurs at longer range.


Asunto(s)
Polaridad Celular , Drosophila/citología , Drosophila/embriología , Envejecimiento , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Transducción de Señal , Alas de Animales/citología
8.
Nature ; 429(6992): 667-71, 2004 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15190355

RESUMEN

Shaping a developing organ or embryo relies on the spatial regulation of cell division and shape. However, morphogenesis also occurs through changes in cell-neighbourhood relationships produced by intercalation. Intercalation poses a special problem in epithelia because of the adherens junctions, which maintain the integrity of the tissue. Here we address the mechanism by which an ordered process of cell intercalation directs polarized epithelial morphogenesis during germ-band elongation, the developmental elongation of the Drosophila embryo. Intercalation progresses because junctions are spatially reorganized in the plane of the epithelium following an ordered pattern of disassembly and reassembly. The planar remodelling of junctions is not driven by external forces at the tissue boundaries but depends on local forces at cell boundaries. Myosin II is specifically enriched in disassembling junctions, and its planar polarized localization and activity are required for planar junction remodelling and cell intercalation. This simple cellular mechanism provides a general model for polarized morphogenesis in epithelial organs.


Asunto(s)
Polaridad Celular , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Morfogénesis , Miosina Tipo II/metabolismo , Alelos , Animales , Tipificación del Cuerpo , Adhesión Celular , Movimiento Celular , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/embriología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo II/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas Asociadas a rho
9.
Nat Neurosci ; 19(4): 587-95, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26928065

RESUMEN

Twenty-four hour rhythms in behavior are organized by a network of circadian pacemaker neurons. Rhythmic activity in this network is generated by intrinsic rhythms in clock neuron physiology and communication between clock neurons. However, it is poorly understood how the activity of a small number of pacemaker neurons is translated into rhythmic behavior of the whole animal. To understand this, we screened for signals that could identify circadian output circuits in Drosophila melanogaster. We found that leucokinin neuropeptide (LK) and its receptor (LK-R) were required for normal behavioral rhythms. This LK/LK-R circuit connects pacemaker neurons to brain areas that regulate locomotor activity and sleep. Our experiments revealed that pacemaker neurons impose rhythmic activity and excitability on LK- and LK-R-expressing neurons. We also found pacemaker neuron-dependent activity rhythms in a second circadian output pathway controlled by DH44 neuropeptide-expressing neurons. We conclude that rhythmic clock neuron activity propagates to multiple downstream circuits to orchestrate behavioral rhythms.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/análisis , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster , Masculino , Actividad Motora/fisiología , Red Nerviosa/química , Neuronas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA