Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 6(4): e03714, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32322714

RESUMEN

Carvacrol (Carv) and thymol (TOH), components of essential oils, are known by their antimicrobial and antioxidant activity. However, Carv but not TOH seems to be the responsible of anti-inflammatory and inhibition of Cu corrosion properties. Since Carv and TOH are positional isomers, their identification is tricky and GC-MS is usually required. To find simple and inexpensive methods that allow the detection of Carv in presence of TOH (e.g. essential oils), cyclic voltammetry and chronoamperometry tests using Pt and Cu as electrodes in TOH and Carv containing mixtures and essential oils were made. Electrochemical and ATR-FTIR results show that pure phytocompounds and mixtures lead to the formation of polymeric layers on both metallic surfaces. Results show that only Cu is suitable for Carv detection. Potentiostatic and potentiodynamic detection is simple and conclusive in Carv + TOH mixtures and in essential oils due to the formation of a homogeneous blocking Carv electropolymeric layer on Cu.

2.
Colloids Surf B Biointerfaces ; 172: 187-196, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30153620

RESUMEN

The prevention of microbial biofilm formation on a biomaterial surface is crucial in avoiding implants failures and the development of antibiotic resistant bacteria. It was reported that biodegradable Mg alloys may show antimicrobial effects due to the alkalinization of the corroding area. However, this issue is controversial and deserves a detailed study, since the processes occurring at the [biodegradable metal/biological medium] interface are complex and varied. Results showed that bacterial adhesion on AZ31 was lower than that of the titanium control and revealed that was dependent on surface composition, depicting some preferential sites for bacterial attachment (C-, P-, O-containing corrosion products) and others that are particularly avoided (active corrosion sites). As a key challenge, a strategy able to improve the performance of Mg alloys by both, reducing the formation of corrosion products and inhibiting bacterial adhesion was subsequently developed. A polymeric layer (polyTOH) was obtained by electropolymerization of thymol (TOH), a phytophenolic compound. The polyTOH can operate as a multifunctional film that improves the surface characteristics of the AZ31 Mg alloy by enhancing corrosion resistance (ions release was reduced to almost the half during the first days) and create an anti-adherent surface (bacterial attachment was 30-fold lower on polyTOH-AZ31 than on non-coated Mg alloy and 200-fold lower than Ti control and was constrained to specific regions). This anti-adherent property implies an additional advantage: enhancement of the efficacy of antibiotic treatments.


Asunto(s)
Aleaciones/farmacología , Adhesión Bacteriana/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Fitoquímicos/farmacología , Polímeros/farmacología , Antibacterianos/farmacología , Corrosión , Electroquímica , Iones , Magnesio/análisis , Viabilidad Microbiana/efectos de los fármacos , Polimerizacion , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/ultraestructura , Propiedades de Superficie , Timol/farmacología
3.
Colloids Surf B Biointerfaces ; 159: 673-683, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28869828

RESUMEN

With the intention of taking care of the environment and human health, the development of alternative eco-friendly methods to inhibit metal corrosion is intensively encouraged. In previous works we showed that some phytocompounds components of essential oils such as carvacrol (Carv) and thymol (TOH) are able to be electropolymerized on metals and they seem to be promissory for this purpose. The aim this paper is to investigate if the biocompatibility of copper covered by coatings formed by electropolymerization of Carv and TOH (polyCarv and polyTOH) is related with the potential selected for the electropolymerization process. Potentiostatic perturbations at different potentials, AFM images, ATR-FTIR spectroscopy and measurements of copper ions release provided suitable information to make a detailed analysis of different stages of the electropolymerization process that leads to polyCarv and polyTOH layers on copper surface. The change of the characteristics of the coatings over time was evaluated after several polymerization periods and current transients were interpreted by using nucleation and growth models. Results showed interesting changes in the polymerization process with the electrochemical perturbation, nature of the isomer, and time of the treatment. The treatment that provides the most protective, transparent and homogeneous layer, that strongly increased the biocompatibility of Cu could be selected: electropolymerization of Carv at 0.4V. Results highlight the importance of the detailed study of the evolution of the electropolymerization processes to select the best ecofriendly condition due the high impact of potential perturbation and polarization time on the biocompatibility of the resulting polymeric layer-copper system.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Cobre/química , Polímeros/química , Técnicas Electroquímicas
4.
J Hazard Mater ; 313: 262-71, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27132073

RESUMEN

The release of copper ions by copper-containing devices, equipments and facilities represents a potential risk for biological systems. Different inhibitory treatments (CuIT) that use organic compounds have been proposed to reduce this environmental hazard but many of them are not in accordance with new regulations. The development of an ecofriendly CuIT based on the use of carvacrol, a natural phenolic compound present in essential oils, is reported here. The effects of carvacrol adsorption (adCarv) and its electropolymerization (polyCarv) were examined. Electropolymerization was attained after cycling the copper electrode in the 0.3-1.0V potential range. Electrochemical techniques complemented by ATR-FTIR, XPS, SEM and AFM surface analyses were used to evaluate the composition and characteristics of the layers. Results demonstrated that adCarv includes cetonic structures while polyCarv additionally contains ether bonds. AFM and SEM observations showed the presence of round nanoglobules, larger for adCarv (close to 50nm diameter). Cytotoxicity of adCarv and polyCarv layers on copper was also evaluated. The comparative analysis of both treatments revealed that polyCarv nanolayer is highly protective while the adCarv layer is weakly protective and reduction in cell viability was found. It was concluded that CuIT that leads to polyCarv nanolayer is very effective and ecofriendly.


Asunto(s)
Cobre/química , Monoterpenos/química , Nanoestructuras/química , Adsorción , Corrosión , Cimenos , Técnicas Electroquímicas , Iones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA