RESUMEN
Biochemical analysis of human normal bronchial cells (BEpiC) and human cancer lung cells (A549) has been performed by using Raman spectroscopy and Raman imaging. Our approach provides a biochemical compositional mapping of the main cell components: nucleus, mitochondria, lipid droplets, endoplasmic reticulum, cytoplasm and cell membrane. We proved that Raman spectroscopy and Raman imaging can distinguish successfully BEpiC and A549 cells. In this study, we have focused on the role of mannose in cancer development. It has been shown that changes in the concentration of mannose can regulate some metabolic processes in cells. Presented results suggest lipids and proteins can be considered as Raman biomarkers during lung cancer progression. Analysis obtained for bands 1444 cm-1, and 2854 cm-1 characteristic for lipids and derivatives proved that the addition of mannose reduced levels of these compounds. Results obtained for protein compounds based on bands 858 cm-1, 1004 cm-1 and 1584 cm-1 proved that the addition of mannose increases the values of protein in BEpiC cells and blocks protein glycolisation in A549 cells. Noticing Raman spectral changes in BEpiC and A549 cells supplemented with mannose can help to understand the mechanism of sugar metabolism during cancer development and could play in the future an important role in clinical treatment.
Asunto(s)
Metabolismo de los Lípidos , Manosa , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Manosa/metabolismo , Manosa/química , Células A549 , Proteínas/metabolismo , Proteínas/análisis , Bronquios/metabolismo , Bronquios/citologíaRESUMEN
Altered metabolism of lipids is a key factor in many diseases including cancer. Therefore, investigations into the impact of unsaturated and saturated fatty acids (FAs) on human body homeostasis are crucial for understanding the development of lifestyle diseases. In this paper, we focus on the impact of palmitic (PA), linoleic (LA), and eicosapentaenoic (EPA) acids on human colon normal (CCD-18 Co) and cancer (Caco-2) single cells using Raman imaging and spectroscopy. The label-free nature of Raman imaging allowed us to evaluate FAs dynamics without modifying endogenous cellular metabolism. Thanks to the ability of Raman imaging to visualize single-cell substructures, we have analyzed the changes in chemical composition of endoplasmic reticulum (ER), mitochondria, lipid droplets (LDs), and nucleus upon FA supplementation. Analysis of Raman band intensity ratios typical for lipids, proteins, and nucleic acids (I1656/I1444, I1444/I1256, I1444/I750, I1304/I1256) proved that, using Raman mapping, we can observe the metabolic pathways of FAs in ER, which is responsible for the uptake of exogenous FAs, de novo synthesis, elongation, and desaturation of FAs, in mitochondria responsible for energy production via FA oxidation, in LDs specialized in cellular fat storage, and in the nucleus, where FAs are transported via fatty-acid-binding proteins, biomarkers of human colon cancerogenesis. Analysis for membranes showed that the uptake of FAs effectively changed the chemical composition of this organelle, and the strongest effect was noticed for LA. The spectroscopy studies have been completed using XTT tests, which showed that the addition of LA or EPA for Caco-2 cells decreases their viability with a stronger effect observed for LA and the opposite effect observed for PA. For normal cells, CCD-18 Co supplementation using LA or EPA stimulated cells for growing, while PA had the opposite impact.
Asunto(s)
Neoplasias del Colon , Ácidos Grasos , Análisis de la Célula Individual , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Análisis de la Célula Individual/métodos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Ácidos Grasos/metabolismo , Células CACO-2 , Metabolismo de los Lípidos , Colon/metabolismo , Colon/patología , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismoRESUMEN
Cancers of digestive tract such as colorectal cancer (CRC) and gastric cancer (GC) are the most commonly detected types of cancer worldwide and their origin can be associated with oxidative stress conditions. Commonly known and followed antioxidants, such as vitamin C and E, are widely considered as potential anti-cancer agents. Raman spectra have great potential in the biochemical characterization of matter based on the fact that each molecule has its own unique vibrational properties. Raman spectroscopy allows to precisely characterize components (proteins, lipids, nucleic acids). The paper presents the application of the Raman spectroscopy technique for the analysis of tissue samples and cells of the human colon and stomach. The main goal of this study is to show the differences between healthy and cancerous tissues from the human digestive tract and human normal and cancer colon and gastric cell lines. The paper presents the spectroscopic characterization of normal colon cells, CCD-18 Co, in physiological and oxidative conditions and effect of oxidative injury of normal colon cells upon supplementation with vitamin C at various concentrations based on Raman spectra. The obtained results were related to the Raman spectra recorded for human colon cancer cells-CaCo-2. In addition, the effect of the antioxidant in the form of vitamin E on gastric cancer cells, HTB-135, is presented and compared with normal gastric cells-CRL-7869. All measured gastric samples were biochemically and structurally characterized by means of Raman spectroscopy and imaging. Statistically assisted analysis has shown that normal, ROS injured and cancerous human gastrointestinal cells can be distinguished based on their unique vibrational properties. ANOVA tests, PCA (Principal Component Analysis) and PLSDA (Partial Least Squares Discriminant Analysis) have confirmed the main role of nucleic acids, proteins and lipids in differentiation of human colon and stomach normal and cancer tissues and cells. The conducted research based on Raman spectra proved that antioxidants in the form of vitamin C and E exhibit anti-cancer properties. In consequence, conducted studies proved that label-free Raman spectroscopy may play an important role in clinical diagnostic differentiation of human normal and cancerous gastrointestinal tissues and may be a source of intraoperative information supporting histopathological analysis.
Asunto(s)
Neoplasias del Colon , Ácidos Nucleicos , Neoplasias Gástricas , Humanos , Ácido Ascórbico/farmacología , Espectrometría Raman/métodos , Células CACO-2 , Lípidos/análisis , Suplementos Dietéticos/análisis , Análisis de Componente PrincipalRESUMEN
Fructose is one of the most important monosaccharides in the human diet that the human body needs for proper metabolism. This paper presents an approach to study biochemical changes caused by sugars in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging. Results after supplementation of human bronchial and lung cells with fructose are also discussed and compared with results obtained for pure human bronchial and lung cells. Based on Raman techniques we have proved that peaks at 750 cm-1, 1126 cm-1, 1444 cm-1, 1584 cm-1 and 2845 cm-1 can be treated as biomarkers to monitor fructose changes in cells. Results for fructose have been compared with results for glucose. Raman analysis of the bands at 750 cm-1, 1126 cm-1, 1584 cm-1 and 2845 cm-1 for pure BEpiC and A549 cells and BEpiC and A549 after supplementation with fructose and glucose are higher after supplementation with fructose in comparison to glucose. The obtained results shed light on the uninvestigated influence of glucose and fructose on lipid droplet metabolism by Raman spectroscopy methods.
Asunto(s)
Glucosa , Neoplasias Pulmonares , Humanos , Fructosa/metabolismo , Espectrometría Raman/métodos , Gotas Lipídicas/metabolismo , Pulmón/metabolismo , Metabolismo de los LípidosRESUMEN
The regular overconsumption of high-energy food (rich in lipids and sugars) results in elevated nutrient absorption in intestine and consequently excessive accumulation of lipids in many organs e.g.: liver, adipose tissue, muscles. In the long term this can lead to obesity and obesity-associated diseases e.g. type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease, inflammatory bowel disease (IBD). In the presented paper based on RI data we have proved that Raman maps can be used successfully for subcellular structures visualization and analysis of fatty acids impact on morphology and chemical composition of human colon single cells - normal and cancer. Based on Raman data we have investigated the changes related to endoplasmic reticulum, mitochondria, lipid droplets and nucleus. Analysis of ratios calculated based on Raman bands typical for proteins (1256, 1656 cm-1), lipids (1304, 1444 cm-1) and nucleic acids (750 cm-1) has confirmed for endoplasmic reticulum the increased activity of this organelle in lipoproteins synthesis upon FAs supplementation; for LDs the changes of desaturation of accumulated lipids with the highest unsaturation level for CaCo-2 cells upon EPA supplementation; for mitochondria the stronger effect of FAs supplementation was observed for CaCo-2 cells confirming the increased activity of this organelle responsible for energy production necessary for tumor development; the weakest impact of FAs supplementation was observed for nucleus for both types of cells and both types of acids. Fluorescence imaging was used for the investigations of changes in LDs/ER morphology. Our measurements have shown the increased area of LDs/ER for CaCo-2 cancer cells, and the strongest effect was noticed for CaCo-2 cells upon EPA supplementation. The increased participation of lipid structures for all types of cells upon FAs supplementation has been confirmed also by AFM studies. The lowest YM values have been observed for CaCo-2 cells including samples treated with FAs.
Asunto(s)
Neoplasias del Colon , Ácido Eicosapentaenoico , Espectrometría Raman , Humanos , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/química , Células CACO-2 , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Ácido Linoleico/farmacología , Ácido Linoleico/química , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Microscopía FluorescenteRESUMEN
Glucose is the main source of energy for the human brain. This paper presents a non-invasive technique to study metabolic changes caused by glucose in human brain cell lines. In this paper we present the spectroscopic characterization of human normal brain (NHA; astrocytes) and human cancer brain (CRL-1718; astrocytoma and U-87 MG; glioblastoma) control cell lines and cell lines upon supplementation with glucose. Based on Raman techniques we have identified biomarkers that can monitor metabolic changes in lipid droplets, mitochondria and nucleus caused by glucose. We have studied the vibrations at 750 cm-1, 1444 cm-1, 1584 cm-1 and 1656 cm-1 as a function of malignancy grade. We have compared the concentration of cytochrome, lipids and proteins in the grade of cancer aggressiveness in normal and cancer human brain cell lines. Chemometric analysis has shown that control normal, control cancer brain cell lines and normal and cancer cell lines after supplementation with glucose can be distinguished based on their unique vibrational properties. PLSDA (Partial Least Squares Discriminant Analysis) and ANOVA tests have confirmed the main role of cytochromes, proteins and lipids in differentiation of control human brain cells and cells upon supplementation with glucose. We have shown that Raman techniques combined with chemometric analysis provide additional insight to monitor the biology of astrocytes, astrocytoma and glioblastoma after glucose supplementation.
Asunto(s)
Neoplasias Encefálicas , Glucosa , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Glucosa/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Encéfalo/metabolismo , Encéfalo/patología , Astrocitos/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologíaRESUMEN
This paper presents an approach to study biochemical changes in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging combined with chemometric methods. Based on Raman spectra and Raman imaging combined with chemometric methods we have proved that peaks at 845 cm-1, 2845 cm-1, 2936 cm-1, 1444 cm-1, 750 cm-1, 1126 cm-1, 1584 cm-1, can be treated as Raman biomarkers probing phosphorylation, lipid reprogramming, oxidative phosphorylation and changes in cholesterol and cytochrome in normal and cancer cells. Raman analysis of the bands at 845 cm-1, 2845 cm-1, 1444 cm-1, and 1126 cm-1 in human cancer lung cells and human normal bronchial cells demonstrate enhanced phosphorylation and triglycerides de novo synthesis, reduced levels of cholesterol and cytochrome c in cancer cells. The sensitivity is equal to 100% (nucleus), 87.5% (mitochondria), 100% (endoplasmic reticulum), 87.5% (lipid droplets), 87.5% (cytoplasm), 87.5% (cell membrane) for A549 cell line and 83.3% (nucleus), 100% (mitochondria), 83.3% (endoplasmic reticulum), 100% (lipid droplets), 100% (cytoplasm), 83.3% (cell membrane) for BEpiC. The values of specificity for cross-validation equal 93.4% (nucleus), 85.5% (mitochondria), 89.5% (endoplasmic reticulum), 90.8% (lipid droplets), 61.8% (cytoplasm), 94.7% (cell membrane) for A549 cell line and 88.5% (nucleus), 85.9% (mitochondria), 85.9% (endoplasmic reticulum), 97.4% (lipid droplets), 75.6% (cytoplasm), 92.3% (cell membrane) for BEpiC. We have confirmed that Raman spectroscopy methods combined with PLS-DA are useful tools to monitor changes in human cancer lung cells and human normal bronchial cells.
Asunto(s)
Quimiometría , Neoplasias Pulmonares , Humanos , Pulmón , Biomarcadores , Colesterol , Lípidos , Espectrometría Raman/métodosRESUMEN
The described research aimed to develop the properties of the conductive composite /poly(3,4-ethylenedioxy-thiophene-poly(4-lithium styrenesulfonic acid)/chitosan-AuNPs-glutaraldehyde/ (/PEDOT-PSSLi/chit-AuNPs-GA/) and to develop an electrochemical enzyme sensor based on this composite material and glassy carbon electrodes (GCEs). The composite was created via electrochemical production of an /EDOT-PSSLi/ layer on a glassy carbon electrode (GCE). This layer was covered with a glutaraldehyde cross-linked chitosan and doped with AuNPs. The influence of AuNPs on the increase in the electrical conductivity of the chitosan layers and on facilitating the oxidation of polyphenols in these layers was demonstrated. The enzymatic sensor was obtained via immobilization of the laccase on the surface of the composite, with glutaraldehyde as the linker. The investigation of the surface morphology of the GCE/PEDOT-PSSLi/chit-AuNPs-GA/Laccase sensor was carried out using SEM and AFM microscopy. Using EDS and Raman spectroscopy, AuNPs were detected in the chitosan layer and in the laccase on the surface of the sensor. Polyphenols were determined using differential pulse voltammetry. The biosensor exhibited catalytic activity toward the oxidation of polyphenols. It has been shown that laccase is regenerated through direct electron transfer between the sensor and the enzyme. The results of the DPV tests showed that the developed sensor can be used for the determination of polyphenols. The peak current was linearly proportional to the concentrations of catechol in the range of 2-90 µM, with a limit of detection (LOD) of 1.7 µM; to those of caffeic acid in the range of 2-90 µM, LOD = 1.9 µM; and to those of gallic acid in the range 2-18 µM, LOD = 1.7 µM. Finally, the research conducted in order to determine gallic acid in a natural sample, for which white wine was used, was described.