Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Med Phys ; 39(10): 5882-90, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23039627

RESUMEN

PURPOSE: Rotational IMRT has been adopted by many clinics for its promise to deliver treatments in a shorter amount of time than other conventional IMRT techniques. In this paper, the authors investigate whether RapidArc is more susceptible to delivery uncertainties than dynamic IMRT using fixed fields. METHODS: Dosimetric effects of delivery uncertainties in dose rate, gantry angle, and MLC leaf positions were evaluated by incorporating these uncertainties into RapidArc and sliding window IMRT (SW IMRT) treatment plans for five head-and-neck and five prostate cases. Dose distributions and dose-volume histograms of original and modified plans were recalculated and compared using Gamma analysis and dose indices of planned treatment volumes (PTV) and organs at risk (OAR). Results of Gamma analyses using passing criteria ranging from 1%-1 mm up to 5%-3 mm were reported. RESULTS: Systematic shifts in MLC leaf bank positions of SW-IMRT cases resulted in 2-4 times higher average percent differences than RapidArc cases. Uniformly distributed random variations of 2 mm for active MLC leaves had a negligible effect on all dose distributions. Sliding window cases were much more sensitive to systematic shifts in gantry angle. Dose rate variations during RapidArc must be much larger than typical machine tolerances to affect dose distributions significantly; dynamic IMRT is inherently not susceptible to such variations. CONCLUSIONS: RapidArc deliveries were found to be more tolerant to variations in gantry position and MLC leaf position than SW IMRT. This may be attributed to the fact that the average segmental field size or MLC leaf opening is much larger for RapidArc. Clinically acceptable treatments may be delivered successfully using RapidArc despite large fluctuations in dose rate and gantry position.


Asunto(s)
Radioterapia de Intensidad Modulada/métodos , Incertidumbre , Artefactos , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Masculino , Aceleradores de Partículas , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica
2.
Phys Med Biol ; 62(4): 1480-1500, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28052050

RESUMEN

This study introduces a practical four-dimensional (4D) planning scheme of IMAT using 4D computed tomography (4D CT) for planning tumor tracking with dynamic multileaf beam collimation. We assume that patients can breathe regularly, i.e. the same way as during 4D CT with an unchanged period and amplitude, and that the start of 4D-IMAT delivery can be synchronized with a designated respiratory phase. Each control point of the IMAT-delivery process can be associated with an image set of 4D CT at a specified respiratory phase. Target is contoured at each respiratory phase without a motion-induced margin. A 3D-IMAT plan is first optimized on a reference-phase image set of 4D CT. Then, based on the projections of the planning target volume in the beam's eye view at different respiratory phases, a 4D-IMAT plan is generated by transforming the segments of the optimized 3D plan by using a direct aperture deformation method. Compensation for both translational and deformable tumor motion is accomplished, and the smooth delivery of the transformed plan is ensured by forcing connectivity between adjacent angles (control points). It is envisioned that the resultant plans can be delivered accurately using the dose rate regulated tracking method which handles breathing irregularities (Yi et al 2008 Med. Phys. 35 3955-62).This planning process is straightforward and only adds a small step to current clinical 3D planning practice. Our 4D planning scheme was tested on three cases to evaluate dosimetric benefits. The created 4D-IMAT plans showed similar dose distributions as compared with the 3D-IMAT plans on a single static phase, indicating that our method is capable of eliminating the dosimetric effects of breathing induced target motion. Compared to the 3D-IMAT plans with large treatment margins encompassing respiratory motion, our 4D-IMAT plans reduced radiation doses to surrounding normal organs and tissues.


Asunto(s)
Tomografía Computarizada Cuatridimensional/métodos , Neoplasias Pulmonares/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagen
3.
Int J Radiat Oncol Biol Phys ; 93(3): 540-6, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26460996

RESUMEN

PURPOSE: To determine the dosimetric effects of rotational errors on target coverage using volumetric modulated arc therapy (VMAT) for multitarget stereotactic radiosurgery (SRS). METHODS AND MATERIALS: This retrospective study included 50 SRS cases, each with 2 intracranial planning target volumes (PTVs). Both PTVs were planned for simultaneous treatment to 21 Gy using a single-isocenter, noncoplanar VMAT SRS technique. Rotational errors of 0.5°, 1.0°, and 2.0° were simulated about all axes. The dose to 95% of the PTV (D95) and the volume covered by 95% of the prescribed dose (V95) were evaluated using multivariate analysis to determine how PTV coverage was related to PTV volume, PTV separation, and rotational error. RESULTS: At 0.5° rotational error, D95 values and V95 coverage rates were ≥95% in all cases. For rotational errors of 1.0°, 7% of targets had D95 and V95 values <95%. Coverage worsened substantially when the rotational error increased to 2.0°: D95 and V95 values were >95% for only 63% of the targets. Multivariate analysis showed that PTV volume and distance to isocenter were strong predictors of target coverage. CONCLUSIONS: The effects of rotational errors on target coverage were studied across a broad range of SRS cases. In general, the risk of compromised coverage increased with decreasing target volume, increasing rotational error and increasing distance between targets. Multivariate regression models from this study may be used to quantify the dosimetric effects of rotational errors on target coverage given patient-specific input parameters of PTV volume and distance to isocenter.


Asunto(s)
Neoplasias Encefálicas/cirugía , Radiocirugia/métodos , Errores de Configuración en Radioterapia , Radioterapia de Intensidad Modulada/métodos , Intervalos de Confianza , Humanos , Análisis Multivariante , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Medición de Riesgo , Rotación , Estadísticas no Paramétricas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA