Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 297(5): 101246, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34582893

RESUMEN

Proliferating cells coordinate histone and DNA synthesis to maintain correct stoichiometry for chromatin assembly. Histone mRNA levels must be repressed when DNA replication is inhibited to prevent toxicity and genome instability due to free non-chromatinized histone proteins. In mammalian cells, replication stress triggers degradation of histone mRNAs, but it is unclear if this mechanism is conserved from other species. The aim of this study was to identify the histone mRNA decay pathway in the yeast Saccharomyces cerevisiae and determine the mechanism by which DNA replication stress represses histone mRNAs. Using reverse transcription-quantitative PCR and chromatin immunoprecipitation-quantitative PCR, we show here that histone mRNAs can be degraded by both 5' → 3' and 3' → 5' pathways; however, replication stress does not trigger decay of histone mRNA in yeast. Rather, replication stress inhibits transcription of histone genes by removing the histone gene-specific transcription factors Spt10p and Spt21p from histone promoters, leading to disassembly of the preinitiation complexes and eviction of RNA Pol II from histone genes by a mechanism facilitated by checkpoint kinase Rad53p and histone chaperone Asf1p. In contrast, replication stress does not remove SCB-binding factor transcription complex, another activator of histone genes, from the histone promoters, suggesting that Spt10p and Spt21p have unique roles in the transcriptional downregulation of histone genes during replication stress. Together, our data show that, unlike in mammalian cells, replication stress in yeast does not trigger decay of histone mRNAs but inhibits histone transcription.


Asunto(s)
Replicación del ADN , ADN de Hongos , Histona Acetiltransferasas , Histonas , Regiones Promotoras Genéticas , ARN de Hongos , ARN Mensajero , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Transcripción Genética , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/biosíntesis , Histonas/genética , ARN de Hongos/biosíntesis , ARN de Hongos/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
J Biol Chem ; 294(25): 9771-9786, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31073026

RESUMEN

The DNA damage response (DDR) is an evolutionarily conserved process essential for cell survival. Previously, we found that decreased histone expression induces mitochondrial respiration, raising the question whether the DDR also stimulates respiration. Here, using oxygen consumption and ATP assays, RT-qPCR and ChIP-qPCR methods, and dNTP analyses, we show that DDR activation in the budding yeast Saccharomyces cerevisiae, either by genetic manipulation or by growth in the presence of genotoxic chemicals, induces respiration. We observed that this induction is conferred by reduced transcription of histone genes and globally decreased DNA nucleosome occupancy. This globally altered chromatin structure increased the expression of genes encoding enzymes of tricarboxylic acid cycle, electron transport chain, oxidative phosphorylation, elevated oxygen consumption, and ATP synthesis. The elevated ATP levels resulting from DDR-stimulated respiration drove enlargement of dNTP pools; cells with a defect in respiration failed to increase dNTP synthesis and exhibited reduced fitness in the presence of DNA damage. Together, our results reveal an unexpected connection between respiration and the DDR and indicate that the benefit of increased dNTP synthesis in the face of DNA damage outweighs possible cellular damage due to increased oxygen metabolism.


Asunto(s)
Daño del ADN , Nucleótidos/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Adenosina Trifosfato/metabolismo , Supervivencia Celular , Ensamble y Desensamble de Cromatina , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Int J Mol Sci ; 19(11)2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30366365

RESUMEN

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) serves as an energy sensor and master regulator of metabolism. In general, AMPK inhibits anabolism to minimize energy consumption and activates catabolism to increase ATP production. One of the mechanisms employed by AMPK to regulate metabolism is protein acetylation. AMPK regulates protein acetylation by at least five distinct mechanisms. First, AMPK phosphorylates and inhibits acetyl-CoA carboxylase (ACC) and thus regulates acetyl-CoA homeostasis. Since acetyl-CoA is a substrate for all lysine acetyltransferases (KATs), AMPK affects the activity of KATs by regulating the cellular level of acetyl-CoA. Second, AMPK activates histone deacetylases (HDACs) sirtuins by increasing the cellular concentration of NAD⁺, a cofactor of sirtuins. Third, AMPK inhibits class I and II HDACs by upregulating hepatic synthesis of α-hydroxybutyrate, a natural inhibitor of HDACs. Fourth, AMPK induces translocation of HDACs 4 and 5 from the nucleus to the cytoplasm and thus increases histone acetylation in the nucleus. Fifth, AMPK directly phosphorylates and downregulates p300 KAT. On the other hand, protein acetylation regulates AMPK activity. Sirtuin SIRT1-mediated deacetylation of liver kinase B1 (LKB1), an upstream kinase of AMPK, activates LKB1 and AMPK. AMPK phosphorylates and inactivates ACC, thus increasing acetyl-CoA level and promoting LKB1 acetylation and inhibition. In yeast cells, acetylation of Sip2p, one of the regulatory ß-subunits of the SNF1 complex, results in inhibition of SNF1. This results in activation of ACC and reduced cellular level of acetyl-CoA, which promotes deacetylation of Sip2p and activation of SNF1. Thus, in both yeast and mammalian cells, AMPK/SNF1 regulate protein acetylation and are themselves regulated by protein acetylation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Acetilcoenzima A/metabolismo , Acetilación , Animales , Epigenómica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/genética
4.
PLoS One ; 16(11): e0260400, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34807950

RESUMEN

Heme is an essential cofactor for enzymes of the electron transport chain (ETC) and ATP synthesis in mitochondrial oxidative phosphorylation (OXPHOS). Heme also binds to and destabilizes Bach1, a transcription regulator that controls expression of several groups of genes important for glycolysis, ETC, and metastasis of cancer cells. Heme synthesis can thus affect pathways through which cells generate energy and precursors for anabolism. In addition, increased heme synthesis may trigger oxidative stress. Since many cancers are characterized by a high glycolytic rate regardless of oxygen availability, targeting glycolysis, ETC, and OXPHOS have emerged as a potential therapeutic strategy. Here, we report that enhancing heme synthesis through exogenous supplementation of heme precursor 5-aminolevulinic acid (ALA) suppresses oxidative metabolism as well as glycolysis and significantly reduces proliferation of both ovarian and breast cancer cells. ALA supplementation also destabilizes Bach1 and inhibits migration of both cell types. Our data indicate that the underlying mechanisms differ in ovarian and breast cancer cells, but involve destabilization of Bach1, AMPK activation, and induction of oxidative stress. In addition, there appears to be an inverse correlation between the activity of oxidative metabolism and ALA sensitivity. Promoting heme synthesis by ALA supplementation may thus represent a promising new anti-cancer strategy, particularly in cancers that are sensitive to altered redox signaling, or in combination with strategies that target the antioxidant systems or metabolic weaknesses of cancer cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Hemo/metabolismo , Neoplasias Ováricas/metabolismo , Estrés Oxidativo , Vías Biosintéticas , Línea Celular Tumoral , Femenino , Glucólisis , Humanos , Efecto Warburg en Oncología
5.
Methods Mol Biol ; 2108: 197-207, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31939182

RESUMEN

Interferon-γ (IFNγ) is a pleiotropic cytokine that signals to many different cell types. IFNγ has both antitumor functions and pro-tumorigenic effects and regulates different aspects of cell physiology, including metabolism. Cancer cells undergo a complex rearrangement of metabolic pathways that allows them to satisfy the needs of increased proliferation, and many cancer cells redirect glucose metabolism from oxidative phosphorylation to aerobic glycolysis. In this chapter, we describe a protocol that utilizes the Agilent Seahorse XFp Analyzer to assess mitochondrial respiration and glycolysis in ovarian cancer cells treated with IFNγ.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Interferón gamma/farmacología , Neoplasias Ováricas/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Análisis de Datos , Espacio Extracelular , Femenino , Glucosa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno , Programas Informáticos , Estrés Fisiológico
6.
Trends Pharmacol Sci ; 39(10): 867-878, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30150001

RESUMEN

Metformin has been a frontline therapy for type 2 diabetes (T2D) for many years. Its effectiveness in T2D treatment is mostly attributed to its suppression of hepatic gluconeogenesis; however, the mechanistic aspects of metformin action remain elusive. In addition to its glucose-lowering effect, metformin possesses other pleiotropic health-promoting effects that include reduced cancer risk and tumorigenesis. Metformin inhibits the electron transport chain (ETC) and ATP synthesis; however, recent data reveal that metformin regulates AMP-activated protein kinase (AMPK) and the mechanistic target of rapamycin complex 1 (mTORC1) by multiple, mutually nonexclusive mechanisms that do not necessarily depend on the inhibition of ETC and the cellular ATP level. In this review, we discuss recent advances in elucidating the molecular mechanisms that are relevant for metformin use in cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Hipoglucemiantes/farmacología , Metformina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antineoplásicos/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metformina/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA