Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 137(6): 1062-75, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19524509

RESUMEN

Allelic loss of the essential autophagy gene beclin1 occurs in human cancers and renders mice tumor-prone suggesting that autophagy is a tumor-suppression mechanism. While tumor cells utilize autophagy to survive metabolic stress, autophagy also mitigates the resulting cellular damage that may limit tumorigenesis. In response to stress, autophagy-defective tumor cells preferentially accumulated p62/SQSTM1 (p62), endoplasmic reticulum (ER) chaperones, damaged mitochondria, reactive oxygen species (ROS), and genome damage. Moreover, suppressing ROS or p62 accumulation prevented damage resulting from autophagy defects indicating that failure to regulate p62 caused oxidative stress. Importantly, sustained p62 expression resulting from autophagy defects was sufficient to alter NF-kappaB regulation and gene expression and to promote tumorigenesis. Thus, defective autophagy is a mechanism for p62 upregulation commonly observed in human tumors that contributes directly to tumorigenesis likely by perturbing the signal transduction adaptor function of p62-controlling pathways critical for oncogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Neoplasias/metabolismo , Aneuploidia , Animales , Apoptosis , Línea Celular , Retículo Endoplásmico/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , FN-kappa B/metabolismo , Neoplasias/genética , Estrés Oxidativo , Proteína Disulfuro Isomerasas/metabolismo , Proteína Sequestosoma-1 , Factor de Transcripción TFIIH , Factores de Transcripción
2.
Epidemiol Infect ; 150: e120, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35321775

RESUMEN

We propose that postal Change-of-Address (CoA) data can be used to monitor/predict likely second wave caseloads in viral infections around urban epicentres. To illustrate the idea, we focus on the tri-state area consisting of New York City (NYC) and surrounding counties in New York, New Jersey and Connecticut States. NYC was an early epicentre of the coronavirus disease 2019 (Covid-19) pandemic, with a first peak in daily cases in early April 2020, followed by the second peak in May/June 2020. Using CoA data from the US Postal Service (USPS), we show that, despite a quarantine mandate, there was a large net movement of households from NYC to surrounding counties in the period April-June 2020. This net outward migration of households was strongly correlated with both the timing and the number of cases in the second peaks in Covid-19 cases in the surrounding counties. The timing of the second peak was also correlated with the distance of the county from NYC, suggesting that this was a directed flow and not random diffusion. Our analysis shows that CoA data is a useful method in tracking the spread of an infectious pandemic agent from urban epicentres.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/epidemiología , Ciudad de Nueva York/epidemiología , Cuarentena
3.
Nucleic Acids Res ; 48(13): 7079-7098, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32525984

RESUMEN

We give results from a detailed analysis of human Ribosomal Protein (RP) levels in normal and cancer samples and cell lines from large mRNA, copy number variation and ribosome profiling datasets. After normalizing total RP mRNA levels per sample, we find highly consistent tissue specific RP mRNA signatures in normal and tumor samples. Multiple RP mRNA-subtypes exist in several cancers, with significant survival and genomic differences. Some RP mRNA variations among subtypes correlate with copy number loss of RP genes. In kidney cancer, RP subtypes map to molecular subtypes related to cell-of-origin. Pan-cancer analysis of TCGA data showed widespread single/double copy loss of RP genes, without significantly affecting survival. In several cancer cell lines, CRISPR-Cas9 knockout of RP genes did not affect cell viability. Matched RP ribosome profiling and mRNA data in humans and rodents stratified by tissue and development stage and were strongly correlated, showing that RP translation rates were proportional to mRNA levels. In a small dataset of human adult and fetal tissues, RP protein levels showed development stage and tissue specific heterogeneity of RP levels. Our results suggest that heterogeneous RP levels play a significant functional role in cellular physiology, in both normal and disease states.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias/metabolismo , ARN Mensajero , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Animales , Línea Celular , Bases de Datos Genéticas , Feto , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Neoplasias/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética
4.
J Theor Biol ; 480: 175-191, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31374283

RESUMEN

A major cause of chemoresistance and recurrence in tumors is the presence of dormant tumor foci that survive chemotherapy and can eventually transition to active growth to regenerate the cancer. In this paper, we propose a Quasi Birth-and-Death (QBD) model for the dynamics of tumor growth and recurrence/remission of the cancer. Starting from a discrete-state master equation that describes the time-dependent transition probabilities between states with different numbers of dormant and active tumor foci, we develop a framework based on a continuum-limit approach to determine the time-dependent probability that an undetectable residual tumor will become large enough to be detectable. We derive an exact formula for the probability of recurrence at large times and show that it displays a phase transition as a function of the ratio of the death rate µA of an active tumor focus to its doubling rate λ. We also derive forward and backward Kolmogorov equations for the transition probability density in the continuum limit and, using a first-passage time formalism, we obtain a drift-diffusion equation for the mean recurrence time and solve it analytically to leading order for a large detectable tumor size N. We show that simulations of the discrete-state model agree with the analytical results, except for O(1/N) corrections. As an example of the use of our model in a clinical setting, we show that a range of model parameters can fit Kaplan-Meier recurrence-free survival data for ovarian cancer. Finally, we show in simulations that extending the duration of chemotherapy increases both the mean recurrence time and the asymptotic (large-time) probability of no recurrence. Our results should be useful in planning optimized chemotherapy dosing and duration for cancer treatment, especially in cancer types for which no targeted therapy is available.


Asunto(s)
Modelos Biológicos , Recurrencia Local de Neoplasia/patología , Simulación por Computador , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Probabilidad , Factores de Tiempo
5.
Bioinformatics ; 31(4): 492-500, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25152231

RESUMEN

MOTIVATION: Translating findings in rodent models to human models has been a cornerstone of modern biology and drug development. However, in many cases, a naive 'extrapolation' between the two species has not succeeded. As a result, clinical trials of new drugs sometimes fail even after considerable success in the mouse or rat stage of development. In addition to in vitro studies, inter-species translation requires analytical tools that can predict the enriched gene sets in human cells under various stimuli from corresponding measurements in animals. Such tools can improve our understanding of the underlying biology and optimize the allocation of resources for drug development. RESULTS: We developed an algorithm to predict differential gene set enrichment as part of the sbv IMPROVER (systems biology verification in Industrial Methodology for Process Verification in Research) Species Translation Challenge, which focused on phosphoproteomic and transcriptomic measurements of normal human bronchial epithelial (NHBE) primary cells under various stimuli and corresponding measurements in rat (NRBE) primary cells. We find that gene sets exhibit a higher inter-species correlation compared with individual genes, and are potentially more suited for direct prediction. Furthermore, in contrast to a similar cross-species response in protein phosphorylation states 5 and 25 min after exposure to stimuli, gene set enrichment 6 h after exposure is significantly different in NHBE cells compared with NRBE cells. In spite of this difference, we were able to develop a robust algorithm to predict gene set activation in NHBE with high accuracy using simple analytical methods. AVAILABILITY AND IMPLEMENTATION: Implementation of all algorithms is available as source code (in Matlab) at http://bhanot.biomaps.rutgers.edu/wiki/codes_SC3_Predicting_GeneSets.zip, along with the relevant data used in the analysis. Gene sets, gene expression and protein phosphorylation data are available on request. CONTACT: hormoz@kitp.ucsb.edu.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Proteómica/métodos , Biología de Sistemas/métodos , Animales , Bronquios/citología , Bronquios/metabolismo , Células Cultivadas , Citocinas/metabolismo , Interpretación Estadística de Datos , Bases de Datos Factuales , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Fosfoproteínas/metabolismo , Fosforilación , Ratas , Transducción de Señal , Especificidad de la Especie
6.
Bioinformatics ; 31(4): 453-61, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24994890

RESUMEN

MOTIVATION: Animal models are widely used in biomedical research for reasons ranging from practical to ethical. An important issue is whether rodent models are predictive of human biology. This has been addressed recently in the framework of a series of challenges designed by the systems biology verification for Industrial Methodology for Process Verification in Research (sbv IMPROVER) initiative. In particular, one of the sub-challenges was devoted to the prediction of protein phosphorylation responses in human bronchial epithelial cells, exposed to a number of different chemical stimuli, given the responses in rat bronchial epithelial cells. Participating teams were asked to make inter-species predictions on the basis of available training examples, comprising transcriptomics and phosphoproteomics data. RESULTS: Here, the two best performing teams present their data-driven approaches and computational methods. In addition, post hoc analyses of the datasets and challenge results were performed by the participants and challenge organizers. The challenge outcome indicates that successful prediction of protein phosphorylation status in human based on rat phosphorylation levels is feasible. However, within the limitations of the computational tools used, the inclusion of gene expression data does not improve the prediction quality. The post hoc analysis of time-specific measurements sheds light on the signaling pathways in both species. AVAILABILITY AND IMPLEMENTATION: A detailed description of the dataset, challenge design and outcome is available at www.sbvimprover.com. The code used by team IGB is provided under http://github.com/uci-igb/improver2013. Implementations of the algorithms applied by team AMG are available at http://bhanot.biomaps.rutgers.edu/wiki/AMG-sc2-code.zip. CONTACT: meikelbiehl@gmail.com.


Asunto(s)
Bronquios/metabolismo , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Fosfoproteínas/metabolismo , Programas Informáticos , Biología de Sistemas/métodos , Algoritmos , Animales , Bronquios/citología , Células Cultivadas , Bases de Datos Factuales , Células Epiteliales/citología , Regulación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Ratas , Especificidad de la Especie , Investigación Biomédica Traslacional
7.
Bioinformatics ; 31(4): 462-70, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25061067

RESUMEN

MOTIVATION: Using gene expression to infer changes in protein phosphorylation levels induced in cells by various stimuli is an outstanding problem. The intra-species protein phosphorylation challenge organized by the IMPROVER consortium provided the framework to identify the best approaches to address this issue. RESULTS: Rat lung epithelial cells were treated with 52 stimuli, and gene expression and phosphorylation levels were measured. Competing teams used gene expression data from 26 stimuli to develop protein phosphorylation prediction models and were ranked based on prediction performance for the remaining 26 stimuli. Three teams were tied in first place in this challenge achieving a balanced accuracy of about 70%, indicating that gene expression is only moderately predictive of protein phosphorylation. In spite of the similar performance, the approaches used by these three teams, described in detail in this article, were different, with the average number of predictor genes per phosphoprotein used by the teams ranging from 3 to 124. However, a significant overlap of gene signatures between teams was observed for the majority of the proteins considered, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the union of the predictor genes of the three teams for multiple proteins. AVAILABILITY AND IMPLEMENTATION: Gene expression and protein phosphorylation data are available from ArrayExpress (E-MTAB-2091). Software implementation of the approach of Teams 49 and 75 are available at http://bioinformaticsprb.med.wayne.edu and http://people.cs.clemson.edu/∼luofeng/sbv.rar, respectively. CONTACT: gyanbhanot@gmail.com or luofeng@clemson.edu or atarca@med.wayne.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Pulmón/metabolismo , Fosfoproteínas/metabolismo , Programas Informáticos , Biología de Sistemas/métodos , Algoritmos , Animales , Células Cultivadas , Bases de Datos Factuales , Células Epiteliales/citología , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Pulmón/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Ratas , Especificidad de la Especie , Investigación Biomédica Traslacional
8.
Immunol Cell Biol ; 93(5): 486-99, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25533286

RESUMEN

Clinical studies using prognostic and predictive signatures have shown that an immune signal emanating from whole tumors reflects the level of immune cell infiltration--a high immune signal linked to improved outcome. Factors regulating immune cell trafficking to the tumor, however, are not known. Previous work has shown that expression of interferon regulatory factor 5 (IRF5), a critical immune regulator, is lost in ~80% of invasive ductal carcinomas examined. We postulated that IRF5-positive and -negative breast tumors would differentially regulate immune cell trafficking to the tumor. Using a focused tumor inflammatory array, differences in cytokine and chemokine expression were examined between IRF5-positive and -negative MDA-MB-231 cells grown in three-dimensional culture. A number of cytokines/chemokines were found to be dysregulated between cultures. CXCL13 was identified as a direct target of IRF5 resulting in the enhanced recruitment of B and T cells to IRF5-positive tumor-conditioned media. The ability of IRF5 to regulate mediators of cell migration was confirmed by enzyme-linked immunosorbent assay, chromatin immunoprecipitation assay, small interfering RNA knockdown and immunofluorescence staining of human breast tumor tissues. Analysis of primary immune cell subsets revealed that IRF5 specifically recruits CXCR5(+) B and T cells to the tumor; CXCR5 is the receptor for CXCL13. Analysis of primary breast tumor tissues revealed a significant correlation between IRF5 and CXCL13 expression providing clinical relevance to the study. Together, these data support that IRF5 directly regulates a network of genes that shapes a tumor immune response and may, in combination with CXCL13, serve as a novel prognostic marker for antitumor immunity.


Asunto(s)
Adenocarcinoma/inmunología , Linfocitos B/inmunología , Neoplasias de la Mama/inmunología , Factores Reguladores del Interferón/metabolismo , Linfocitos T/inmunología , Movimiento Celular , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Medios de Cultivo Condicionados , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Factores Reguladores del Interferón/genética , Células MCF-7 , Receptores CXCR5/metabolismo , Transgenes/genética , Microambiente Tumoral
9.
BMC Cancer ; 15: 524, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26183823

RESUMEN

BACKGROUND: Alternate transcripts from a single gene locus greatly enhance the combinatorial flexibility of the human transcriptome. Different patterns of exon usage have been observed when comparing normal tissue to cancers, suggesting that variant transcripts may play a role in the tumor phenotype. METHODS: Ribonucleic acid-sequencing (RNA-seq) data from breast cancer samples was used to identify an intronic start variant transcript of Acyl-CoA oxidase 2, ACOX2 (ACOX2-i9). Difference in expression between Estrogen Receptor (ER) positive and ER negative patients was assessed by the Wilcoxon rank sum test, and the findings validated in The Cancer Genome Atlas (TCGA) breast cancer dataset (BRCA). ACOX2-i9 expression was also assessed in cell lines using both quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and Western blot analysis. Knock down by short hairpin RNA (shRNA) and colony formation assays were used to determine whether ACOX2-i9 expression would influence cellular fitness. The effect of ACOX2-i9 expression on patient survival was assessed by the Kaplan-Meier survival function, and association to clinical parameters was analyzed using a Fisher exact test. RESULTS: The expression and translation of ACOX2-i9 into a 25 kDa protein was demonstrated in HepG2 cells as well as in several breast cancer cell lines. shRNA knock down of the ACOX2-i9 variant resulted in decreased cell viability of T47D and MDA-MB 436 cells. Moreover, expression of ACOX2-i9 was shown to be estrogen regulated, being induced by propyl pyrazoletriol and inhibited by tamoxifen and fulvestrant in ER+ T47D and Mcf-7 cells, but not in the ER- MDA-MB 436 cell line. This variant transcript showed expression predominantly in ER-positive breast tumors as assessed in our initial set of 53 breast cancers and further validated in 87 tumor/normal pairs from the TCGA breast cancer dataset, and expression was associated with better outcome in ER positive patients. CONCLUSIONS: ACOX2-i9 is specifically enriched in ER+ breast cancers where expression of the variant is associated with improved outcome. These data identify variant ACOX2 as a potential novel therapeutic biomarker in ER+ breast tumors.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Receptores de Estrógenos/metabolismo , Análisis de Secuencia de ARN/métodos , Neoplasias de la Mama/genética , Línea Celular Tumoral , Supervivencia Celular , Codón Iniciador , Estradiol/análogos & derivados , Estradiol/farmacología , Femenino , Fulvestrant , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Variación Genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Fenoles/farmacología , Pronóstico , Pirazoles/farmacología , Análisis de Supervivencia , Tamoxifeno/farmacología
10.
J Neurosci ; 32(26): 8778-90, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22745480

RESUMEN

Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.


Asunto(s)
Envejecimiento/patología , Sistema Nervioso/citología , Neuritas/fisiología , Neuronas/citología , Sinapsis/patología , Tacto/fisiología , Factores de Edad , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Mutación/genética , Neuritas/ultraestructura , Neuronas/clasificación , Neuronas/ultraestructura , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología , Sinapsis/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
medRxiv ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37546829

RESUMEN

Within the context of the standard SIR model of pandemics, we show that the asymmetry in the peak in recorded daily cases during a pandemic can be used to infer the pandemic R-parameter. Using only daily data for symptomatic, confirmed cases, we derive a universal scaling curve that yields: (i) reff, the pandemic R-parameter; (ii) Leff, the effective latency, the average number of days an infected individual is able to infect others and (iii) α, the probability of infection per contact between infected and susceptible individuals. We validate our method using an example and then apply it to estimate these parameters for the first phase of the SARS-Cov-2/Covid-19 pandemic for several countries where there was a well separated peak in identified infected daily cases. The extension of the SIR model developed in this paper differentiates itself from earlier studies in that it provides a simple method to make an a-posteriori estimate of several useful epidemiological parameters, using only data on confirmed, identified cases. Our results are general and can be applied to any pandemic.

12.
Commun Biol ; 5(1): 834, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982125

RESUMEN

Long non-coding RNAs (lncRNAs) are involved in breast cancer pathogenesis through chromatin remodeling, transcriptional and post-transcriptional gene regulation. We report robust associations between lncRNA expression and breast cancer clinicopathological features in two population-based cohorts: SCAN-B and TCGA. Using co-expression analysis of lncRNAs with protein coding genes, we discovered three distinct clusters of lncRNAs. In silico cell type deconvolution coupled with single-cell RNA-seq analyses revealed that these three clusters were driven by cell type specific expression of lncRNAs. In one cluster lncRNAs were expressed by cancer cells and were mostly associated with the estrogen signaling pathways. In the two other clusters, lncRNAs were expressed either by immune cells or fibroblasts of the tumor microenvironment. To further investigate the cis-regulatory regions driving lncRNA expression in breast cancer, we identified subtype-specific transcription factor (TF) occupancy at lncRNA promoters. We also integrated lncRNA expression with DNA methylation data to identify long-range regulatory regions for lncRNA which were validated using ChiA-Pet-Pol2 loops. lncRNAs play an important role in shaping the gene regulatory landscape in breast cancer. We provide a detailed subtype and cell type-specific expression of lncRNA, which improves the understanding of underlying transcriptional regulation in breast cancer.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Neoplasias de la Mama/patología , Metilación de ADN , Femenino , Regulación de la Expresión Génica , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Microambiente Tumoral
13.
medRxiv ; 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33821284

RESUMEN

The five boroughs of New York City (NYC) were early epicenters of the Covid-19 pandemic in the United States, with over 380,000 cases by May 31. High caseloads were also seen in nearby counties in New Jersey (NJ), Connecticut (CT) and New York (NY). The pandemic started in the area in March with an exponential rise in the number of daily cases, peaked in early April, briefly declined, and then, showed clear signs of a second peak in several counties. We will show that despite control measures such as lockdown and restriction of movement during the exponential rise in daily cases, there was a significant net migration of households from NYC boroughs to the neighboring counties in NJ, CT and NY State. We propose that the second peak in daily cases in these counties around NYC was due, in part, to the movement of people from NYC boroughs to these counties. We estimate the movement of people using "Change of Address" (CoA) data from the US Postal Service, provided under the "Freedom of Information Act" of 1967. To identify the timing of the second peak and the number of cases in it, we use a previously proposed SIR model, which accurately describes the early stages of the coronavirus pandemic in European countries. Subtracting the model fits from the data identified, we establish the timing and the number of cases, NCS, in the second peak. We then related the number of cases in the second peak to the county population density, P, and the excess Change of Address, ECoA, into each county using the simple model NCS~PαECoAß which fits the data very well with α = 0.68, ß = 0.31 (R2 = 0.74, p = 1.3e-8). We also find that the time between the first and second peaks was proportional to the distance of the county seat from NY Penn Station, suggesting that this migration of households and disease was a directed flow and not a diffusion process. Our analysis provides a simple method to use change of address data to track the spread of an infectious agent, such as SARS-Cov-2, due to migrations away from epicenters during the initial stages of a pandemic.

14.
PLoS One ; 16(7): e0255212, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34324570

RESUMEN

Inferring the impact of climate upon the transmission of SARS-CoV-2 has been confounded by variability in testing, unknown disease introduction rates, and changing weather. Here we present a data model that accounts for dynamic testing rates and variations in disease introduction rates. We apply this model to data from Colombia, whose varied and seasonless climate, central port of entry, and swift, centralized response to the COVID-19 pandemic present an opportune environment for assessing the impact of climate factors on the spread of COVID-19. We observe strong attenuation of transmission in climates with sustained daily temperatures above 30 degrees Celsius and simultaneous mean relative humidity below 78%, with outbreaks occurring at high humidity even where the temperature is high. We hypothesize that temperature and relative humidity comodulate the infectivity of SARS-CoV-2 within respiratory droplets.


Asunto(s)
COVID-19/transmisión , SARS-CoV-2/patogenicidad , COVID-19/virología , Clima , Colombia , Humanos , Humedad , Pandemias/prevención & control , Temperatura , Tiempo (Meteorología)
15.
Cancers (Basel) ; 13(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34885081

RESUMEN

Esophageal adenocarcinoma (EAC) is strongly associated with Barrett's esophagus (BE), a pre-malignant condition resulting from gastric reflux. Esophageal squamous cell carcinoma (ESCC), the other major subtype of esophageal cancer, shows strong association with smoking and alcohol intake and no association with gastric reflux. In this study, we constructed and validated gene expression signatures of EAC vs. ESCC tumors using publicly available datasets, and subsequently assessed the enrichment levels of these signatures in commonly used EAC and ESCC cell lines, normal esophageal tissues and normal esophageal cell lines, and primary BE tissues and BE cell lines. We found that unlike ESCC cell lines which were quite similar to primary ESCC tumors, EAC cell lines were considerably different from primary EAC tumors but still more similar to EAC tumors than ESCC tumors, as the genes up in EAC vs. ESCC (EAChi) had considerably lower expression in EAC cell lines than EAC tumors. However, more surprisingly, unlike various normal cell lines (EPC2, Het-1A) which were very similar to various tissues from normal esophagus, BE cell lines (BAR-T, CP-A) were extremely different from primary BE tissues, as BE cell lines had substantially lower levels of EAChi and substantially higher levels of ESCChi gene expression. This ESCC-like profile of the BAR-T remained unaltered even after prolonged exposure to an acidic bile mixture in vitro resulting in malignant transformation of this cell line. However, primary BE tissues had EAC-like gene expression profiles as expected. Only one EAC case from the Cancer Genome Atlas resembled BE cell lines, and while it had the clinical profile and some mutational features of EAC, it had some mutational features, the copy number alteration profile, and the gene expression profile of ESCC instead. These incomprehensible changes in gene expression patterns may result in ambiguous changes in the phenotype and warrants careful evaluation to inform selection of appropriate in vitro tools for future studies on esophageal adenocarcinoma.

16.
PLoS Pathog ; 4(6): e1000079, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18535658

RESUMEN

It is well known that the dinucleotide CpG is under-represented in the genomic DNA of many vertebrates. This is commonly thought to be due to the methylation of cytosine residues in this dinucleotide and the corresponding high rate of deamination of 5-methycytosine, which lowers the frequency of this dinucleotide in DNA. Surprisingly, many single-stranded RNA viruses that replicate in these vertebrate hosts also have a very low presence of CpG dinucleotides in their genomes. Viruses are obligate intracellular parasites and the evolution of a virus is inexorably linked to the nature and fate of its host. One therefore expects that virus and host genomes should have common features. In this work, we compare evolutionary patterns in the genomes of ssRNA viruses and their hosts. In particular, we have analyzed dinucleotide patterns and found that the same patterns are pervasively over- or under-represented in many RNA viruses and their hosts suggesting that many RNA viruses evolve by mimicking some of the features of their host's genes (DNA) and likely also their corresponding mRNAs. When a virus crosses a species barrier into a different host, the pressure to replicate, survive and adapt, leaves a footprint in dinucleotide frequencies. For instance, since human genes seem to be under higher pressure to eliminate CpG dinucleotide motifs than avian genes, this pressure might be reflected in the genomes of human viruses (DNA and RNA viruses) when compared to those of the same viruses replicating in avian hosts. To test this idea we have analyzed the evolution of the influenza virus since 1918. We find that the influenza A virus, which originated from an avian reservoir and has been replicating in humans over many generations, evolves in a direction strongly selected to reduce the frequency of CpG dinucleotides in its genome. Consistent with this observation, we find that the influenza B virus, which has spent much more time in the human population, has adapted to its human host and exhibits an extremely low CpG dinucleotide content. We believe that these observations directly show that the evolution of RNA viral genomes can be shaped by pressures observed in the host genome. As a possible explanation, we suggest that the strong selection pressures acting on these RNA viruses are most likely related to the innate immune response and to nucleotide motifs in the host DNA and RNAs.


Asunto(s)
Evolución Biológica , Orthomyxoviridae/genética , Virus ARN/genética , Selección Genética , Fosfatos de Dinucleósidos , Genoma Humano , Genoma Viral , Humanos , Virus de la Influenza A/genética , Virus de la Influenza B/genética
17.
BMC Cancer ; 10: 319, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20569444

RESUMEN

BACKGROUND: We have identified a set of genes whose relative mRNA expression levels in various solid tumors can be used to robustly distinguish cancer from matching normal tissue. Our current feature set consists of 113 gene probes for 104 unique genes, originally identified as differentially expressed in solid primary tumors in microarray data on Affymetrix HG-U133A platform in five tissue types: breast, colon, lung, prostate and ovary. For each dataset, we first identified a set of genes significantly differentially expressed in tumor vs. normal tissue at p-value = 0.05 using an experimentally derived error model. Our common cancer gene panel is the intersection of these sets of significantly dysregulated genes and can distinguish tumors from normal tissue on all these five tissue types. METHODS: Frozen tumor specimens were obtained from two commercial vendors Clinomics (Pittsfield, MA) and Asterand (Detroit, MI). Biotinylated targets were prepared using published methods (Affymetrix, CA) and hybridized to Affymetrix U133A GeneChips (Affymetrix, CA). Expression values for each gene were calculated using Affymetrix GeneChip analysis software MAS 5.0. We then used a software package called Genes@Work for differential expression discovery, and SVM light linear kernel for building classification models. RESULTS: We validate the predictability of this gene list on several publicly available data sets generated on the same platform. Of note, when analysing the lung cancer data set of Spira et al, using an SVM linear kernel classifier, our gene panel had 94.7% leave-one-out accuracy compared to 87.8% using the gene panel in the original paper. In addition, we performed high-throughput validation on the Dana Farber Cancer Institute GCOD database and several GEO datasets. CONCLUSIONS: Our result showed the potential for this panel as a robust classification tool for multiple tumor types on the Affymetrix platform, as well as other whole genome arrays. Apart from possible use in diagnosis of early tumorigenesis, some other potential uses of our methodology and gene panel would be in assisting pathologists in diagnosis of pre-cancerous lesions, determining tumor boundaries, assessing levels of contamination in cell populations in vitro and identifying transformations in cell cultures after multiple passages. Moreover, based on the robustness of this gene panel in identifying normal vs. tumor, mislabelled or misinterpreted samples can be pinpointed with high confidence.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Pruebas Genéticas/métodos , Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Bases de Datos Genéticas , Femenino , Humanos , Masculino , Valor Predictivo de las Pruebas , ARN Mensajero/análisis , Reproducibilidad de los Resultados , Programas Informáticos
18.
J Theor Biol ; 263(4): 393-406, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20006623

RESUMEN

Ductal carcinoma in situ (DCIS) of the breast is a non-invasive tumor in which cells proliferate abnormally, but remain confined within a duct. Although four distinguishable DCIS morphologies are recognized, the mechanisms that generate these different morphological classes remain unclear, and consequently the prognostic strength of DCIS classification is not strong. To improve the understanding of the relation between morphology and time course, we have developed a 2D in silico particle model of the growth of DCIS within a single breast duct. This model considers mechanical effects such as cellular adhesion and intra-ductal pressure, and biological features including proliferation, apoptosis, necrosis, and cell polarity. Using this model, we find that different regions of parameter space generate distinct morphological subtypes of DCIS, so elucidating the relation between morphology and time course. Furthermore, we find that tumors with similar architectures may in fact be produced through different mechanisms, and we propose future work to further disentangle the mechanisms involved in DCIS progression.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Apoptosis , Técnicas de Apoyo para la Decisión , Progresión de la Enfermedad , Femenino , Humanos , Imagenología Tridimensional , Oncología Médica/métodos , Modelos Anatómicos , Modelos Biológicos , Modelos Teóricos , Necrosis , Programas Informáticos , Factores de Tiempo
19.
Genome Inform ; 24: 139-53, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22081596

RESUMEN

We develop a general method to identify gene networks from pair-wise correlations between genes in a microarray data set and apply it to a public prostate cancer gene expression data from 69 primary prostate tumors. We define the degree of a node as the number of genes significantly associated with the node and identify hub genes as those with the highest degree. The correlation network was pruned using transcription factor binding information in VisANT (http://visant.bu.edu/) as a biological filter. The reliability of hub genes was determined using a strict permutation test. Separate networks for normal prostate samples, and prostate cancer samples from African Americans (AA) and European Americans (EA) were generated and compared. We found that the same hubs control disease progression in AA and EA networks. Combining AA and EA samples, we generated networks for low low (<7) and high (≥7) Gleason grade tumors. A comparison of their major hubs with those of the network for normal samples identified two types of changes associated with disease: (i) Some hub genes increased their degree in the tumor network compared to their degree in the normal network, suggesting that these genes are associated with gain of regulatory control in cancer (e.g. possible turning on of oncogenes). (ii) Some hubs reduced their degree in the tumor network compared to their degree in the normal network, suggesting that these genes are associated with loss of regulatory control in cancer (e.g. possible loss of tumor suppressor genes). A striking result was that for both AA and EA tumor samples, STAT5a, CEBPB and EGR1 are major hubs that gain neighbors compared to the normal prostate network. Conversely, HIF-lα is a major hub that loses connections in the prostate cancer network compared to the normal prostate network. We also find that the degree of these hubs changes progressively from normal to low grade to high grade disease, suggesting that these hubs are master regulators of prostate cancer and marks disease progression. STAT5a was identified as a central hub, with ~120 neighbors in the prostate cancer network and only 81 neighbors in the normal prostate network. Of the 120 neighbors of STAT5a, 57 are known cancer related genes, known to be involved in functional pathways associated with tumorigenesis. Our method is general and can easily be extended to identify and study networks associated with any two phenotypes.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neoplasias de la Próstata/metabolismo , Factor de Transcripción STAT5/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Negro o Afroamericano , Algoritmos , Biología Computacional/métodos , Perfilación de la Expresión Génica , Genes Supresores de Tumor , Humanos , Masculino , Neoplasias de la Próstata/etnología , Estados Unidos , Población Blanca
20.
medRxiv ; 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32511530

RESUMEN

Understanding the characteristics of the SARS-Cov-2/Covid-19 pandemic is central to developing control strategies. Here we show how a simple Susceptible-Infective-Recovered (SIR) model applied to data for eight European countries and the United Kingdom (UK) can be used to forecast the descending limb (post-peak) of confirmed cases and deaths as a function of time, and predict the duration of the pandemic once it has peaked, by estimating and fixing parameters using only characteristics of the ascending limb and the magnitude of the first peak. As with all epidemiological analyses, unanticipated behavioral changes will result in deviations between projection and observation. This is abundantly clear for the current pandemic. Nonetheless, accurate short-term projections are possible, and the methodology we present is a useful addition to the epidemiologist's armamentarium. Since our predictions assume that control measures such as lockdown, social distancing, use of masks etc. remain the same post-peak as before peak, deviations from our predictions are a measure of the extent to which loosening of control measures have impacted case-loads and deaths since the first peak and initial decline in daily cases and deaths. The predicted and actual case fatality ratio, or number of deaths per million population from the start of the pandemic to when daily deaths number less than five for the first time, was lowest in Norway (pred: 44 ± 5 deaths/million; actual: 36 deaths/million) and highest for the United Kingdom (pred: 578 +/- 65 deaths/million; actual 621 deaths/million). The inferred pandemic characteristics separated into two distinct groups: those that are largely invariant across countries, and those that are highly variable. Among the former is the infective period, T L ( T L ¯ = 16.3 ± 2.7  days ) ; the average time between contacts, T R ( T R ¯ = 3.8 ± 0.5 ) days and the average number of contacts while infective, R ( R ¯ = 4.4 ± 0.5 ) . In contrast, there is a highly variable time lag T D between the peak in the daily number of confirmed cases and the peak in the daily number of deaths, ranging from a low of T D = 2,4 days for Denmark and Italy respectively, to highs of T D = 12, 15 for Germany and Norway respectively. The mortality fraction, or ratio of deaths to confirmed cases, was also highly variable, ranging from low values 3%, 5% and 5% for Norway, Denmark and Germany respectively, to high values of 18%, 20% and 21% for Sweden, France, and the UK respectively. The probability of mortality rather than recovery was a significant correlate of the duration of the pandemic, defined as the time from 12/31/2019 to when the number of daily deaths fell below 5. Finally, we observed a small but detectable effect of average temperature on the probability α of infection per contact, with higher temperatures associated with lower infectivity. Policy implications of our findings are also briefly discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA