RESUMEN
Drug design with patient centricity for ease of administration and pill burden requires robust understanding of the impact of chemical modifications on relevant physicochemical properties early in lead optimization. To this end, we have developed a physics-based ensemble approach to predict aqueous thermodynamic crystalline solubility, with a 2D chemical structure as the input. Predictions for the bromodomain and extraterminal domain (BET) inhibitor series show very close match (0.5 log unit) with measured thermodynamic solubility for cases with low crystal anisotropy and good match (1 log unit) for high anisotropy structures. The importance of thermodynamic solubility is clearly demonstrated by up to a 4 log unit drop in solubility compared to kinetic (amorphous) solubility in some cases and implications thereof, for instance on human dose. We have also demonstrated that incorporating predicted crystal structures in thermodynamic solubility prediction is necessary to differentiate (up to 4 log unit) between solubility of molecules within the series. Finally, our physics-based ensemble approach provides valuable structural insights into the origins of 3-D conformational landscapes, crystal polymorphism, and anisotropy that can be leveraged for both drug design and development.
Asunto(s)
Física , Agua , Humanos , Conformación Molecular , Solubilidad , TermodinámicaRESUMEN
Early assessment of crystalline thermodynamic solubility continues to be elusive for drug discovery and development despite its critical importance, especially for the ever-increasing fraction of poorly soluble drug candidates. Here we present a detailed evaluation of a physics-based free energy perturbation (FEP+) approach for computing the thermodynamic aqueous solubility. The predictive power of this approach is assessed across diverse chemical spaces, spanning pharmaceutically relevant literature compounds and more complex AbbVie compounds. Our approach achieves predictive (RMSE = 0.86) and differentiating power (R2 = 0.69) and therefore provides notably improved correlations to experimental solubility compared to state-of-the-art machine learning approaches that utilize quantum mechanics-based descriptors. The importance of explicit considerations of crystalline packing in predicting solubility by the FEP+ approach is also highlighted in this study. Finally, we show how computed energetics, including hydration and sublimation free energies, can provide further insights into molecule design to feed the medicinal chemistry DMTA cycle.