Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 10(4): e1004091, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24743229

RESUMEN

Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than α-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties.


Asunto(s)
Citoesqueleto de Actina/química , Actinas/química , Plasmodium berghei/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
2.
Cell Mol Life Sci ; 72(21): 4193-203, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26012696

RESUMEN

Gene fusion is a common mechanism of protein evolution that has mainly been discussed in the context of multidomain or symmetric proteins. Less is known about fusion of ancestral genes to produce small single-domain proteins. Here, we show with a domain-swapped mutant Plasmodium profilin that this small, globular, apparently single-domain protein consists of two foldons. The separation of binding sites for different protein ligands in the two halves suggests evolution via an ancient gene fusion event, analogous to the formation of multidomain proteins. Finally, the two fragments can be assembled together after expression as two separate gene products. The possibility to engineer both domain-swapped dimers and half-profilins that can be assembled back to a full profilin provides perspectives for engineering of novel protein folds, e.g., with different scaffolding functions.


Asunto(s)
Evolución Molecular , Fusión Génica , Plasmodium falciparum/química , Profilinas/química , Profilinas/genética , Dicroismo Circular , Cristalografía por Rayos X , Exones , Intrones , Modelos Moleculares , Mutación , Pliegue de Proteína , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Dispersión del Ángulo Pequeño , Difracción de Rayos X
3.
Artículo en Inglés | MEDLINE | ID: mdl-24100575

RESUMEN

Malaria is a devastating disease caused by apicomplexan parasites of the genus Plasmodium that use a divergent actin-powered molecular motor for motility and invasion. Plasmodium actin differs from canonical actins in sequence, structure and function. Here, the purification, crystallization and secondary-structure analysis of the two Plasmodium actin isoforms are presented. The recombinant parasite actins were folded and could be purified to homogeneity. Plasmodium actins I and II were crystallized in complex with the gelsolin G1 domain; the crystals diffracted to resolutions of 1.19 and 2.2 Šand belonged to space groups P212121 and P21, respectively, each with one complex in the asymmetric unit.


Asunto(s)
Actinas/química , Malaria/parasitología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Animales , Cromatografía en Gel , Dicroismo Circular , Cristalización , Cristalografía por Rayos X , Ratones , Datos de Secuencia Molecular , Isoformas de Proteínas , Proteínas Recombinantes/biosíntesis
4.
IUBMB Life ; 62(6): 467-76, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20503440

RESUMEN

Triclosan, a well-known inhibitor of Enoyl Acyl Carrier Protein Reductase (ENR) from several pathogenic organisms, is a promising lead compound to design effective drugs. We have solved the X-ray crystal structures of Plasmodium falciparum ENR in complex with triclosan variants having different substituted and unsubstituted groups at different key functional locations. The structures revealed that 4 and 2' substituted compounds have more interactions with the protein, cofactor, and solvents when compared with triclosan. New water molecules were found to interact with some of these inhibitors. Substitution at the 2' position of triclosan caused the relocation of a conserved water molecule, leading to an additional hydrogen bond with the inhibitor. This observation can help in conserved water-based inhibitor design. 2' and 4' unsubstituted compounds showed a movement away from the hydrophobic pocket to compensate for the interactions made by the halogen groups of triclosan. This compound also makes additional interactions with the protein and cofactor which compensate for the lost interactions due to the unsubstitution at 2' and 4'. In cell culture, this inhibitor shows less potency, which indicates that the chlorines at 2' and 4' positions increase the ability of the inhibitor to cross multilayered membranes. This knowledge helps us to modify the different functional groups of triclosan to get more potent inhibitors.


Asunto(s)
Antiinfecciosos Locales/química , Enoil-ACP Reductasa (NADH)/química , Inhibidores Enzimáticos/química , Plasmodium falciparum/enzimología , Triclosán/química , Antiinfecciosos Locales/farmacología , Cristalografía por Rayos X , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Concentración 50 Inhibidora , Modelos Moleculares , Estructura Molecular , Plasmodium falciparum/efectos de los fármacos , Triclosán/farmacología
5.
Artículo en Inglés | MEDLINE | ID: mdl-20445265

RESUMEN

The malaria parasite Plasmodium depends on its actin-based motor system for motility and host-cell invasion. Actin-depolymerization factors are important regulatory proteins that affect the rate of actin turnover. Plasmodium has two actin-depolymerization factors which seem to have different functions and display low sequence homology to the higher eukaryotic family members. Plasmodium actin-depolymerization factors 1 and 2 have been crystallized. The crystals diffracted X-rays to maximum resolutions of 2.0 and 2.1 A and belonged to space groups P3(1)21 or P3(2)21, with unit-cell parameters a = b = 68.8, c = 76.0 A, and P2(1)2(1)2, with unit-cell parameters a = 111.6, b = 57.9, c = 40.5 A, respectively, indicating the presence of one or two molecules per asymmetric unit in both cases.


Asunto(s)
Plasmodium berghei/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Cristalografía por Rayos X , Modelos Moleculares
6.
PLoS One ; 7(3): e33586, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22428073

RESUMEN

Apicomplexan parasites, such as the malaria-causing Plasmodium species, utilize a unique way of locomotion and host cell invasion. This substrate-dependent gliding motility requires rapid cycling of actin between the monomeric state and very short, unbranched filaments. Despite the crucial role of actin polymerization for the survival of the malaria parasite, the majority of Plasmodium cellular actin is present in the monomeric form. Plasmodium lacks most of the canonical actin nucleators, and formins are essentially the only candidates for this function in all Apicomplexa. The malaria parasite has two formins, containing conserved formin homology (FH) 2 and rudimentary FH1 domains. Here, we show that Plasmodium falciparum formin 1 associates with and nucleates both mammalian and Plasmodium actin filaments. Although Plasmodium profilin alone sequesters actin monomers, thus inhibiting polymerization, its monomer-sequestering activity does not compete with the nucleating activity of formin 1 at an equimolar profilin-actin ratio. We have determined solution structures of P. falciparum formin 1 FH2 domain both in the presence and absence of the lasso segment and the FH1 domain, and show that the lasso is required for the assembly of functional dimers.


Asunto(s)
Actinas/metabolismo , Proteínas Fetales/metabolismo , Locomoción/fisiología , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Plasmodium falciparum/genética , Secuencia de Aminoácidos , Dicroismo Circular , Clonación Molecular , Dimerización , Proteínas Fetales/química , Forminas , Proteínas de Microfilamentos/química , Datos de Secuencia Molecular , Proteínas Nucleares/química , Plasmodium falciparum/fisiología , Estructura Terciaria de Proteína/genética , Dispersión del Ángulo Pequeño
7.
Sci Rep ; 2: 899, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23198089

RESUMEN

Juxtanodin, also called ermin, is an F-actin-binding protein expressed by oligodendrocytes, the myelin-forming cells of the central nervous system. While juxtanodin carries a short conserved F-actin-binding segment at its C terminus, it otherwise shares no similarity with known protein sequences. We carried out a structural characterization of recombinant juxtanodin in solution. Juxtanodin turned out to be intrinsically disordered, as evidenced by conventional and synchrotron radiation CD spectroscopy. Small-angle X-ray scattering indicated that juxtanodin is a monomeric, highly elongated, unfolded molecule. Ensemble optimization analysis of the data suggested also the presence of more compact forms of juxtanodin. The C terminus was a strict requirement for co-sedimentation of juxtanodin with microfilaments, but juxtanodin had only mild effects on actin polymerization. The disordered nature of juxtanodin may predict functions as a protein interaction hub, although F-actin is its only currently known binding partner.


Asunto(s)
Actinas/química , Proteínas Portadoras/química , Proteínas de Microfilamentos/química , Proteínas Recombinantes/química , Actinas/metabolismo , Actinas/ultraestructura , Algoritmos , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Dicroismo Circular , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Ratas , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Programas Informáticos , Soluciones/química , Porcinos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA