Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Kidney Int ; 105(3): 540-561, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38159678

RESUMEN

Clinical studies suggest that non-alcoholic steatohepatitis (NASH) is an independent risk factor for chronic kidney disease (CKD), but causality and mechanisms linking these two major diseases are lacking. To assess whether NASH can induce CKD, we have characterized kidney function, histological features, transcriptomic and lipidomic profiles in a well-validated murine NASH model. Mice with NASH progressively developed significant podocyte foot process effacement, proteinuria, glomerulosclerosis, tubular epithelial cell injury, lipid accumulation, and interstitial fibrosis. The progression of kidney fibrosis paralleled the severity of the histologic NASH-activity score. Significantly, we confirmed the causal link between NASH and CKD by orthotopic liver transplantation, which attenuated proteinuria, kidney dysfunction, and fibrosis compared with control sham operated mice. Transcriptomic analysis of mouse kidney cortices revealed differentially expressed genes that were highly enriched in mitochondrial dysfunction, lipid metabolic process, and insulin signaling pathways in NASH-induced CKD. Lipidomic analysis of kidney cortices further revealed that phospholipids and sphingolipids were the most significantly changed lipid species. Notably, we found similar kidney histological changes in human NASH and CKD. Thus, our results confirm a causative role of NASH in the development of CKD, reveal potential pathophysiologic mechanisms of NASH-induced kidney injury, and established a valuable model to study the pathogenesis of NASH-associated CKD. This is an important feature of fatty liver disease that has been largely overlooked but has clinical and prognostic importance.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Insuficiencia Renal Crónica , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Renal Crónica/patología , Fosfolípidos/metabolismo , Proteinuria/patología , Hígado/patología
2.
J Hepatol ; 81(2): 207-217, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38508241

RESUMEN

BACKGROUND & AIMS: Hepatic stellate cells (HSCs) are the key drivers of fibrosis in metabolic dysfunction-associated steatohepatitis (MASH), the fastest growing cause of hepatocellular carcinoma (HCC) worldwide. HSCs are heterogenous, and a senescent subset of HSCs is implicated in hepatic fibrosis and HCC. Administration of anti-uPAR (urokinase-type plasminogen activator receptor) CAR T cells has been shown to deplete senescent HSCs and attenuate fibrosis in murine models. However, the comprehensive features of senescent HSCs in MASH, as well as their cellular ontogeny have not been characterized; hence, we aimed to comprehensively characterize and define the origin of HSCs in human and murine MASH. METHODS: To comprehensively characterize the phenotype and ontogeny of senescent HSCs in human and murine MASH, we integrated senescence-associated beta galactosidase activity with immunostaining, flow cytometry and single-nucleus RNA sequencing (snRNAseq). We integrated the immunohistochemical profile with a senescence score applied to snRNAseq data to characterize senescent HSCs and mapped the evolution of uPAR expression in MASH. RESULTS: Using pseudotime trajectory analysis, we establish that senescent HSCs arise from activated HSCs. While uPAR is expressed in MASH, the magnitude and cell-specificity of its expression evolve with disease stage. In early disease, uPAR is more specific to activated and senescent HSCs, while it is also expressed by myeloid-lineage cells, including Trem2+ macrophages and myeloid-derived suppressor cells, in late disease. Furthermore, we identify novel surface proteins expressed on senescent HSCs in human and murine MASH that could be exploited as therapeutic targets. CONCLUSIONS: These data define features of HSC senescence in human and murine MASH, establishing an important blueprint to target these cells as part of future antifibrotic therapies. IMPACT AND IMPLICATIONS: Hepatic stellate cells (HSCs) are the primary drivers of scarring in chronic liver diseases. As injury develops, a subset of HSCs become senescent; these cells are non-proliferative and pro-inflammatory, thereby contributing to worsening liver injury. Here we show that senescent HSCs are expanded in MASH (metabolic dysfunction-associated steatohepatitis) in humans and mice, and we trace their cellular origin from the activated HSC subset. We further characterize expression of uPAR (urokinase plasminogen activated receptor), a protein that marks senescent HSCs, and report that uPAR is also expressed by activated HSCs in early injury, and in immune cells as liver injury advances. We have integrated high-resolution single-nucleus RNA sequencing with immunostaining and flow cytometry to identify five other novel proteins expressed by senescent HSCs, including mannose receptor CD206, which will facilitate future therapeutic development.


Asunto(s)
Senescencia Celular , Células Estrelladas Hepáticas , Fenotipo , Células Estrelladas Hepáticas/metabolismo , Senescencia Celular/fisiología , Animales , Humanos , Ratones , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hígado Graso/metabolismo , Hígado Graso/etiología , Hígado Graso/patología , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL
3.
Eur Radiol ; 32(12): 8339-8349, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35727321

RESUMEN

OBJECTIVES: Portal hypertension (PH) is associated with complications such as ascites and esophageal varices and is typically diagnosed through invasive hepatic venous pressure gradient (HVPG) measurement, which is not widely available. In this study, we aim to assess the diagnostic performance of 2D/3D MR elastography (MRE) and shear wave elastography (SWE) measures of liver and spleen stiffness (LS and SS) and spleen volume, to noninvasively diagnose clinically significant portal hypertension (CSPH) using HVPG measurement as the reference. METHODS: In this prospective study, patients with liver disease underwent 2D/3D MRE and SWE of the liver and spleen, as well as HVPG measurement. The correlation between MRE/SWE measures of LS/SS and spleen volume with HVPG was assessed. ROC analysis was used to determine the utility of MRE, SWE, and spleen volume for diagnosing CSPH. RESULTS: Thirty-six patients (M/F 22/14, mean age 55 ± 14 years) were included. Of the evaluated parameters, 3D MRE SS had the strongest correlation with HVPG (r = 0.686, p < 0.001), followed by 2D MRE SS (r = 0.476, p = 0.004). 3D MRE SS displayed the best performance for diagnosis of CSPH (AUC = 0.911) followed by 2D MRE SS (AUC = 0.845) and 3D MRE LS (AUC = 0.804). SWE SS showed poor performance for diagnosis of CSPH (AUC = 0.583) while spleen volume was a fair predictor (AUC = 0.738). 3D MRE SS was significantly superior to SWE LS/SS (p ≤ 0.021) for the diagnosis of CSPH. CONCLUSION: SS measured with 3D MRE outperforms SWE for the diagnosis of CSPH. SS appears to be a useful biomarker for assessing PH severity. These results need further validation. KEY POINTS: • Spleen stiffness measured with 2D and 3D MR elastography correlates significantly with hepatic venous pressure gradient measurement. • Spleen stiffness measured with 3D MR elastography demonstrates excellent performance for the diagnosis of clinically significant portal hypertension (AUC 0.911). • Spleen stiffness measured with 3D MR elastography outperforms liver and spleen stiffness measured with shear wave elastography for diagnosis of clinically significant portal hypertension.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hipertensión Portal , Humanos , Adulto , Persona de Mediana Edad , Anciano , Diagnóstico por Imagen de Elasticidad/métodos , Estudios Prospectivos , Cirrosis Hepática/complicaciones , Hipertensión Portal/complicaciones , Hipertensión Portal/diagnóstico por imagen , Hipertensión Portal/patología , Presión Portal , Hígado/patología
4.
Cell Mol Life Sci ; 78(14): 5631-5646, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34110423

RESUMEN

Peroxisomes play an essential role in the ß-oxidation of dicarboxylic acids (DCAs), which are metabolites formed upon ω-oxidation of fatty acids. Genetic evidence linking transporters and enzymes to specific DCA ß-oxidation steps is generally lacking. Moreover, the physiological functions of DCA metabolism remain largely unknown. In this study, we aimed to characterize the DCA ß-oxidation pathway in human cells, and to evaluate the biological role of DCA metabolism using mice deficient in the peroxisomal L-bifunctional protein (Ehhadh KO mice). In vitro experiments using HEK-293 KO cell lines demonstrate that ABCD3 and ACOX1 are essential in DCA ß-oxidation, whereas both the bifunctional proteins (EHHADH and HSD17B4) and the thiolases (ACAA1 and SCPx) have overlapping functions and their contribution may depend on expression level. We also show that medium-chain 3-hydroxydicarboxylic aciduria is a prominent feature of EHHADH deficiency in mice most notably upon inhibition of mitochondrial fatty acid oxidation. Using stable isotope tracing methodology, we confirmed that products of peroxisomal DCA ß-oxidation can be transported to mitochondria for further metabolism. Finally, we show that, in liver, Ehhadh KO mice have increased mRNA and protein expression of cholesterol biosynthesis enzymes with decreased (in females) or similar (in males) rate of cholesterol synthesis. We conclude that EHHADH plays an essential role in the metabolism of medium-chain DCAs and postulate that peroxisomal DCA ß-oxidation is a regulator of hepatic cholesterol biosynthesis.


Asunto(s)
Colesterol/metabolismo , Ácidos Dicarboxílicos/orina , Errores Innatos del Metabolismo Lipídico/patología , Hepatopatías/patología , Mitocondrias/patología , Enzima Bifuncional Peroxisomal/fisiología , Animales , Femenino , Células HEK293 , Homeostasis , Humanos , Errores Innatos del Metabolismo Lipídico/etiología , Hepatopatías/etiología , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo
5.
J Inherit Metab Dis ; 44(6): 1419-1433, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34564857

RESUMEN

Peroxisomes metabolize a specific subset of fatty acids, which include dicarboxylic fatty acids (DCAs) generated by ω-oxidation. Data obtained in vitro suggest that the peroxisomal transporter ABCD3 (also known as PMP70) mediates the transport of DCAs into the peroxisome, but in vivo evidence to support this role is lacking. In this work, we studied an Abcd3 KO mouse model generated by CRISPR-Cas9 technology using targeted and untargeted metabolomics, histology, immunoblotting, and stable isotope tracing technology. We show that ABCD3 functions in hepatic DCA metabolism and uncover a novel role for this peroxisomal transporter in lipid homeostasis. The Abcd3 KO mouse presents with increased hepatic long-chain DCAs, increased urine medium-chain DCAs, lipodystrophy, enhanced hepatic cholesterol synthesis and decreased hepatic de novo lipogenesis. Moreover, our study suggests that DCAs are metabolized by mitochondrial fatty acid ß-oxidation when ABCD3 is not functional, reflecting the importance of the metabolic compartmentalization and communication between peroxisomes and mitochondria. In summary, this study provides data on the role of the peroxisomal transporter ABCD3 in hepatic lipid homeostasis and DCA metabolism, and the consequences of peroxisomal dysfunction for the liver.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Grasos/metabolismo , Homeostasis , Metabolismo de los Lípidos , Transportadoras de Casetes de Unión a ATP/genética , Animales , Femenino , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Oxidación-Reducción , Peroxisomas/metabolismo
6.
Global Health ; 12(1): 75, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27884162

RESUMEN

BACKGROUND: Donors commonly fund innovative interventions to improve health in the hope that governments of low and middle-income countries will scale-up those that are shown to be effective. Yet innovations can be slow to be adopted by country governments and implemented at scale. Our study explores this problem by identifying key contextual factors influencing scale-up of maternal and newborn health innovations in three low-income settings: Ethiopia, the six states of northeast Nigeria and Uttar Pradesh state in India. METHODS: We conducted 150 semi-structured interviews in 2012/13 with stakeholders from government, development partner agencies, externally funded implementers including civil society organisations, academic institutions and professional associations to understand scale-up of innovations to improve the health of mothers and newborns these study settings. We analysed interview data with the aid of a common analytic framework to enable cross-country comparison, with Nvivo to code themes. RESULTS: We found that multiple contextual factors enabled and undermined attempts to catalyse scale-up of donor-funded maternal and newborn health innovations. Factors influencing government decisions to accept innovations at scale included: how health policy decisions are made; prioritising and funding maternal and newborn health; and development partner harmonisation. Factors influencing the implementation of innovations at scale included: health systems capacity in the three settings; and security in northeast Nigeria. Contextual factors influencing beneficiary communities' uptake of innovations at scale included: sociocultural contexts; and access to healthcare. CONCLUSIONS: We conclude that context is critical: externally funded implementers need to assess and adapt for contexts if they are to successfully position an innovation for scale-up.


Asunto(s)
Difusión de Innovaciones , Política de Salud , Salud del Lactante/estadística & datos numéricos , Servicios de Salud Materna/organización & administración , Salud Materna/estadística & datos numéricos , Etiopía , Femenino , Humanos , India , Recién Nacido , Nigeria , Embarazo , Investigación Cualitativa
7.
J Gen Virol ; 95(Pt 2): 363-372, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23997183

RESUMEN

Non-structural 5A protein (NS5A) has emerged as an important pharmacological target for hepatitis C virus (HCV). However, little is known about the conformation of NS5A intracellularly or how NS5A inhibitors achieve the picomolar (pM) inhibition of virus replication. Here, we have presented two structurally related small molecules, one that potently inhibits HCV replication and selects for resistance in NS5A, and another that is inactive. Resistance to this antiviral was greater in genotype 1a than in genotype 1b replicons and mapped to domain 1 of NS5A. Using a novel cell-based assay that measures the intracellular proximity of fluorescent tags covalently attached to NS5A, we showed that only the active antiviral specifically disrupted the close proximity of inter- and intramolecular positions of NS5A. The active antiviral, termed compound 1, caused a repositioning of both the N and C termini of NS5A, including disruption of the close approximation of the N termini of two different NS5A molecules in a multimolecular complex. These data provide the first study of how antivirals that select resistance in domain 1 of NS5A alter the cellular conformation of NS5A. This class of antiviral disrupts the close proximity of the N termini of domain 1 in a NS5A complex but also alters the conformation of domain 3, and leads to large aggregates of NS5A. Current models predict that a multicomponent cocktail of antivirals is needed to treat HCV infection, so a mechanistic understanding of what each component does to the viral machinery will be important.


Asunto(s)
Antivirales/metabolismo , Hepacivirus/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Línea Celular , Farmacorresistencia Viral , Hepatocitos/virología , Humanos , Conformación Proteica/efectos de los fármacos , Selección Genética , Replicación Viral/efectos de los fármacos
8.
Cells ; 13(19)2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39404414

RESUMEN

The peptide hormone kisspeptin attenuates liver steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and fibrosis in mouse models by signaling via the kisspeptin 1 receptor (KISS1R). However, whether kisspeptin impacts fibrogenesis in the human liver is not known. We investigated the impact of a potent kisspeptin analog (KPA) on fibrogenesis using human precision-cut liver slices (hPCLS) from fibrotic livers from male patients, in human hepatic stellate cells (HSCs), LX-2, and in primary mouse HSCs. In hPCLS, 48 h and 72 h of KPA (3 nM, 100 nM) treatment decreased collagen secretion and lowered the expression of fibrogenic and inflammatory markers. Immunohistochemical studies revealed that KISS1R is expressed and localized to HSCs in MASH/fibrotic livers. In HSCs, KPA treatment reduced transforming growth factor b (TGFß)-the induced expression of fibrogenic and inflammatory markers, in addition to decreasing TGFß-induced collagen secretion, cell migration, proliferation, and colony formation. Mechanistically, KISS1R signaling downregulated TGFß signaling by decreasing SMAD2/3 phosphorylation via the activation of protein phosphatases, PP2A, which dephosphorylates SMAD 2/3. This study revealed for the first time that kisspeptin reverses human hepatic fibrogenesis, thus identifying it as a new therapeutic target to treat hepatic fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Kisspeptinas , Cirrosis Hepática , Transducción de Señal , Factor de Crecimiento Transformador beta , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Kisspeptinas/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Animales , Masculino , Ratones , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Proliferación Celular/efectos de los fármacos , Proteína Smad2/metabolismo , Movimiento Celular/efectos de los fármacos
9.
Nat Metab ; 6(6): 1178-1196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867022

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Masculino , Hígado/metabolismo , Hígado/patología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Dieta Occidental/efectos adversos , Estudios Retrospectivos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/etiología
10.
J Virol ; 86(15): 8277-86, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22623794

RESUMEN

Nonstructural protein 5A (NS5A) is essential for hepatitis C virus (HCV) replication and assembly and is a critical drug target. Biochemical data suggest large parts of NS5A are unfolded as an isolated protein, but little is known about its folded state in the cell. We used fluorescence resonance energy transfer (FRET) to probe whether or not different regions of NS5A are in close proximity within the cell. Twenty-three separate reporter constructs were created by inserting one or more fluorophores into different positions throughout the three domains of NS5A. FRET efficiency was maximal when donor and acceptor fluorophores were positioned next to each other but also could be observed when the two fluorophores flanked NS5A domain 1 or domain 3. Informatic and biochemical analysis suggests that large portions of the carboxy terminus of NS5A are in an unfolded and disordered state. Quercetin, a natural product known to disrupt NS5A function in cells, specifically disrupted a conformationally specific domain 3 FRET signal. Intermolecular FRET indicated that the NS5A amino termini, but not other regions, are in close proximity in multimeric complexes. Overall, this assay provides a new window on the intracellular conformation(s) of NS5A and how the conformation changes in response to cellular and viral components of the replication and assembly complex as well as antiviral drugs.


Asunto(s)
Antivirales/química , Sistemas de Liberación de Medicamentos , Transferencia Resonante de Energía de Fluorescencia , Hepacivirus/química , Proteínas no Estructurales Virales/química , Antivirales/uso terapéutico , Línea Celular , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatitis C/tratamiento farmacológico , Hepatitis C/genética , Hepatitis C/metabolismo , Humanos , Estructura Terciaria de Proteína , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
11.
J Virol ; 86(7): 3952-60, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22278255

RESUMEN

Hepatitis C virus (HCV) is the leading cause of liver disease worldwide. In this study, we analyzed four treatment-naïve patients infected with subtype 1a and performed Roche/454 pyrosequencing across the coding region. We report the presence of low-level drug resistance mutations that would most likely have been missed using conventional sequencing methods. The approach described here is broadly applicable to studies of viral diversity and could help to improve the efficacy of direct-acting antiviral agents (DAA) in the treatment of HCV-infected patients.


Asunto(s)
Hepacivirus/genética , Hepatitis C/virología , Especificidad del Huésped , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN/métodos , Antivirales/farmacología , Farmacorresistencia Viral , Hepacivirus/clasificación , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Humanos , Datos de Secuencia Molecular , Filogenia
12.
Virol J ; 10: 242, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23876037

RESUMEN

BACKGROUND: The flaviviral nonstructural protein 5 (NS5) is a phosphoprotein, though the precise identities and roles of many specific phosphorylations remain unknown. Protein kinase G (PKG), a cGMP-dependent protein kinase, has previously been shown to phosphorylate dengue virus NS5. METHODS: We used mass spectrometry to specifically identify NS5 phosphosites. Co-immunoprecipitation assays were used to study protein-protein interactions. Effects on viral replication were measured via replicon system and plaque assay titering. RESULTS: We identified multiple sites in West Nile virus (WNV) NS5 that are phosphorylated during a WNV infection, and showed that the N-terminal methyltransferase domain of WNV NS5 can be specifically phosphorylated by PKG in vitro. Expressing PKG in cell culture led to an enhancement of WNV viral production. We hypothesized this effect on replication could be caused by factors beyond the specific phosphorylations of NS5. Here we show for the first time that PKG is also able to stably interact with a viral substrate, WNV NS5, in cell culture and in vitro. While the mosquito-borne WNV NS5 interacted with PKG, tick-borne Langat virus NS5 did not. The methyltransferase domain of NS5 is able to mediate the interaction between NS5 and PKG, and mutating positive residues in the αE region of the methyltransferase interrupts the interaction. These same mutations completely inhibited WNV replication. CONCLUSIONS: PKG is not required for WNV replication, but does make a stable interaction with NS5. While the consequence of the NS5:PKG interaction when it occurs is unclear, mutational data demonstrates that this interaction occurs in a region of NS5 that is otherwise necessary for replication. Overall, the results identify an interaction between virus and a cellular kinase and suggest a role for a host kinase in enhancing flaviviral replication.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Interacciones Huésped-Patógeno , Metiltransferasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Virus del Nilo Occidental/fisiología , Animales , Línea Celular , Análisis Mutacional de ADN , Humanos , Proteínas Mutantes/metabolismo , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional
13.
Sci Transl Med ; 15(677): eadd3949, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599008

RESUMEN

Advanced hepatic fibrosis, driven by the activation of hepatic stellate cells (HSCs), affects millions worldwide and is the strongest predictor of mortality in nonalcoholic steatohepatitis (NASH); however, there are no approved antifibrotic therapies. To identify antifibrotic drug targets, we integrated progressive transcriptomic and morphological responses that accompany HSC activation in advanced disease using single-nucleus RNA sequencing and tissue clearing in a robust murine NASH model. In advanced fibrosis, we found that an autocrine HSC signaling circuit emerged that was composed of 68 receptor-ligand interactions conserved between murine and human NASH. These predicted interactions were supported by the parallel appearance of markedly increased direct stellate cell-cell contacts in murine NASH. As proof of principle, pharmacological inhibition of one such autocrine interaction, neurotrophic receptor tyrosine kinase 3-neurotrophin 3, inhibited human HSC activation in culture and reversed advanced murine NASH fibrosis. In summary, we uncovered a repertoire of antifibrotic drug targets underlying advanced fibrosis in vivo. The findings suggest a therapeutic paradigm in which stage-specific therapies could yield enhanced antifibrotic efficacy in patients with advanced hepatic fibrosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Células Estrelladas Hepáticas/patología , Comunicación Autocrina , Fibrosis , Cirrosis Hepática/patología , Hígado
14.
Sci Rep ; 12(1): 15661, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123383

RESUMEN

Fatty acid synthase (FASN) is an attractive therapeutic target in non-alcoholic steatohepatitis (NASH) because it drives de novo lipogenesis and mediates pro-inflammatory and fibrogenic signaling. We therefore tested pharmacological inhibition of FASN in human cell culture and in three diet induced mouse models of NASH. Three related FASN inhibitors were used; TVB-3664, TVB-3166 and clinical stage TVB-2640 (denifanstat). In human primary liver microtissues, FASN inhibiton (FASNi) decreased triglyceride (TG) content, consistent with direct anti-steatotic activity. In human hepatic stellate cells, FASNi reduced markers of fibrosis including collagen1α (COL1α1) and α-smooth muscle actin (αSMA). In CD4+ T cells exposed to NASH-related cytokines, FASNi decreased production of Th17 cells, and reduced IL-1ß release in LPS-stimulated PBMCs. In mice with diet induced NASH l, FASNi prevented development of hepatic steatosis and fibrosis, and reduced circulating IL-1ß. In mice with established diet-induced NASH, FASNi reduced NAFLD activity score, fibrosis score, ALT and TG levels. In the CCl4-induced FAT-NASH mouse model, FASN inhibition decreased hepatic fibrosis and fibrosis markers, and development of hepatocellular carcinoma (HCC) tumors by 85%. These results demonstrate that FASN inhibition attenuates inflammatory and fibrotic drivers of NASH by direct inhibition of immune and stellate cells, beyond decreasing fat accumulation in hepatocytes. FASN inhibition therefore provides an opportunity to target three key hallmarks of NASH.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Actinas , Animales , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/prevención & control , Citocinas , Modelos Animales de Enfermedad , Acido Graso Sintasa Tipo I , Ácido Graso Sintasas , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Lipopolisacáridos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Nitrilos , Enfermedad del Hígado Graso no Alcohólico/patología , Piperidinas , Triazoles , Triglicéridos
15.
Biochim Biophys Acta ; 1804(10): 2016-24, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20637319

RESUMEN

Regulatory factor X (RFX) is a heterotrimeric protein complex having RFX5, RFXANK and RFXAP as its three subunits. It is involved in the regulation of the transcription of MHCII molecules in antigen presenting cells. The RFX complex binds to X-box DNA, using the DNA binding domain, present in RFX5. The DNA binding domain (DBD) of RFX5 (12kD) and intact RFXANK (35 kD) were subcloned, expressed and purified. The associations of RFX5DBD with the X-box DNA and between RFX5DBD and RFXANK were measured in this study. The interaction of RFX5DBD and X-box DNA was studied using steady state fluorescence quenching and circular dichroism. The binding dissociation constant (K(d)) of the DNA-protein complex was determined from fluorescence measurements. The van't Hoff plot was linear over the temperature range 10-25 degrees C and the binding was found to be entropy-driven and enthalpy-favorable. The effect of electrolytes in RFX5DBD-DNA association was also studied. Molecular association between RFX5DBD and RFXANK has been observed by fluorescence resonance energy transfer (FRET) measurements, changes in the ratio of the two vibronic intensities of pyrene labeled RFX5DBD in presence of RFXANK and chemical cross-linking followed by tandem mass spectrometry. Results showed that the two proteins could interact in the absence of the third subunit RFXAP, in vitro with an apparent dissociation constant (K(d)) of 128 nM.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Reactivos de Enlaces Cruzados/farmacología , ADN/química , ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Transferencia Resonante de Energía de Fluorescencia , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción del Factor Regulador X , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Termodinámica , Factores de Transcripción/química , Factores de Transcripción/genética
16.
Virol J ; 8: 458, 2011 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-21967740

RESUMEN

BACKGROUND: Hepatitis C Virus (HCV) infected patients are frequently repeatedly exposed to the virus, but very few recombinants between two genotypes have been reported. FINDINGS: We describe the discovery of an HCV recombinant using a method developed in a United States clinical lab for HCV genotyping that employs sequencing of both 5' and 3' portions of the HCV genome. Over twelve months, 133 consecutive isolates were analyzed, and a virus from one patient was found with discordant 5' and 3' sequences suggesting it was a genotype 2b/1a recombinant. We ruled out a mixed infection and mapped a recombination point near the NS2/3 cleavage site. CONCLUSIONS: This unique HCV recombinant virus described shares some features with other recombinant viruses although it is the only reported recombinant of a genotype 2 with a subtype 1a. This recombinant represents a conundrum for current clinical treatment guidelines, including treatment with protease inhibitors. This recombinant is also challenging to detect by the most commonly employed methods of genotyping that are directed primarily at the 5' structural portion of the HCV genome.


Asunto(s)
Genoma Viral , Hepacivirus , Hepatitis C Crónica/genética , Tipificación Molecular/métodos , Virus Reordenados , Recombinación Genética , Región de Flanqueo 3' , Región de Flanqueo 5' , Secuencia de Bases , Coinfección , Cartilla de ADN/química , Cartilla de ADN/genética , Genotipo , Hepacivirus/genética , Hepacivirus/aislamiento & purificación , Hepatitis C Crónica/virología , Humanos , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Estados Unidos
17.
Soft Robot ; 8(4): 397-415, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32758017

RESUMEN

Soft robotic systems are well suited for developing devices for biomedical applications. A bio-mimicking robotic soft esophagus (RoSE) is developed as an in vitro testing device of endoprosthetic stents for dysphagia management. Endoprosthetic stent placement is an immediate and cost-effective therapy for dysphagia caused by malignant esophageal strictures from esophageal cancer. However, later stage complications, such as stent migration, could weaken the swallow efficacy in the esophagus. The stent radial force (RF) on the esophageal wall is pivotal in avoiding stent migration. Due to limited randomized controlled trials in patients, the stent design and stenting guidelines are still unconstructive. To address the knowledge deficit, we have investigated the capabilities of the RoSE by implanting two stents (stent A and B) of different radial stiffness characteristics, to measure the stent RF and its effect on the stent migration. Also, endoscopic manometry on the RoSE under peristalsis has been performed to study the impact of stenting and stent dysfunctionality on the intrabolus pressure signatures (IBPSs) in the RoSE, and further its effects on the swallowing efficacy. Each implanted stent in the RoSE underwent a set of experiments with various test variables (peristalsis velocity and wavelength, and bolus concentrations). In this study, the conducted tests are representative of the application of RoSE to perform a wide-ranging assessment of the stent behavior. The usability of RoSE has been discussed by comparing the results of stent A and B, for various combinations of the test variables mentioned earlier. The results have demonstrated that the stiffer stent B has a higher RF, whereas stent A maintained its RF at a low profile due to its lesser stiffness. The results have also implicated that a high RF is necessary to minimize the stent migration under prolonged peristaltic contractions in the RoSE. For the manometry experiments, stent A slightly increased the IBPS, but the stiffer stent B significantly decreased the IBPS, especially for the higher concentration boluses. It was found that if a stiffer stent buckles, it can reduce the swallow efficacy and cause recurrent dysphagia. Therefore, RoSE is an innovative soft robotic platform that is capable of testing various endoprosthetic stents, thereby offering a solution to many existing clinical challenges in the area of stent testing.


Asunto(s)
Trastornos de Deglución , Procedimientos Quirúrgicos Robotizados , Robótica , Trastornos de Deglución/etiología , Trastornos de Deglución/terapia , Humanos , Stents/efectos adversos
18.
PLoS One ; 16(1): e0244763, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33395434

RESUMEN

BACKGROUND & AIM: Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) that is responsible for a growing fraction of cirrhosis and liver cancer cases worldwide. Changes in the gut microbiome have been implicated in NASH pathogenesis, but the lack of suitable murine models has been a barrier to progress. We have therefore characterized the microbiome in a well-validated murine NASH model to establish its value in modeling human disease. METHODS: The composition of intestinal microbiota was monitored in mice on a 12- or 24-week NASH protocol consisting of high fat, high sugar Western Diet (WD) plus once weekly i.p injection of low-dose CCl4. Additional mice were subjected to WD-only or CCl4-only conditions to assess the independent effect of these variables on the microbiome. RESULTS: There was substantial remodeling of the intestinal microbiome in NASH mice, characterized by declines in both species diversity and bacterial abundance. Based on changes to beta diversity, microbiota from NASH mice clustered separately from controls in principal coordinate analyses. A comparison between WD-only and CCl4-only controls with the NASH model identified WD as the primary driver of early changes to the microbiome, resulting in loss of diversity within the 1st week. A NASH signature emerged progressively at weeks 6 and 12, including, most notably, a reproducible bloom of the Firmicute order Erysipelotrichales. CONCLUSIONS: We have established a valuable model to study the role of gut microbes in NASH, enabling us to identify a new NASH gut microbiome signature.


Asunto(s)
Disbiosis/microbiología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Bacterias , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Disbiosis/complicaciones , Heces/microbiología , Fibrosis/complicaciones , Fibrosis/microbiología , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Variación Genética/genética , Humanos , Inflamación/complicaciones , Cirrosis Hepática/patología , Neoplasias Hepáticas/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/microbiología
19.
Soft Robot ; 8(3): 273-283, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32559391

RESUMEN

The human stomach breaks down and transports food by coordinated radial contractions of the gastric walls. The radial contractions periodically propagate through the stomach and constitute the peristaltic contractions, also called the gastric motility. The force, amplitude, and frequency of peristaltic contractions are relevant to massaging and transporting the food contents in the gastric lumen. However, existing gastric simulators have not faithfully replicated gastric motility. Herein, we report a soft robotic gastric simulator (SoGut) that emulates peristaltic contractions in an anatomically realistic way. SoGut incorporates an array of circular air chambers that generate radial contractions. The design and fabrication of SoGut leverages principles from the soft robotics field, which features compliance and adaptability. We studied the force and amplitude of the contractions when the lumen of SoGut was empty or filled with contents of different viscosity. We examined the contracting force using manometry. SoGut exhibited a similar range of contracting force as the human stomach reported in the literature. Besides, we investigated the amplitude of the contractions through videofluoroscopy where the contraction ratio was derived. The contraction ratio as a function of inflation pressure is found to match the observations of in vivo situations. We demonstrated that SoGut can achieve in vitro peristaltic contractions by coordinating the inflation sequence of multiple air chambers. It exhibited the functions to massage and transport the food contents. SoGut can simulate the physiological motions of the human stomach to advance research of digestion.


Asunto(s)
Robótica , Digestión/fisiología , Humanos , Manometría , Peristaltismo/fisiología , Estómago/fisiología
20.
JHEP Rep ; 3(3): 100237, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34151243

RESUMEN

BACKGROUND & AIMS: Aramchol is a fatty acid-bile acid conjugate that reduces liver fat content and is being evaluated in a phase III clinical trial for non-alcoholic steatohepatitis (NASH). Aramchol attenuates NASH in mouse models and decreases steatosis by downregulating the fatty acid synthetic enzyme stearoyl CoA desaturase 1 (SCD1) in hepatocytes. Although hepatic stellate cells (HSCs) also store lipids as retinyl esters, the impact of Aramchol in this cell type is unknown. METHODS: We investigated the effects of Aramchol on a human HSC line (LX-2), primary human HSCs (phHSCs), and primary human hepatocytes (phHeps). RESULTS: In LX-2 and phHSCs, 10 µM Aramchol significantly reduced SCD1 mRNA while inducing PPARG (PPARγ) mRNA, with parallel changes in the 2 proteins; ACTA2, COL1A1, ß-PDGFR (bPDGFR) mRNAs were also significantly reduced in LX-2. Secretion of collagen 1 (Col1α1) was inhibited by 10 µM Aramchol. SCD1 knockdown in LX-2 cells phenocopied the effect of Aramchol by reducing fibrogenesis, and addition of Aramchol to these cells did not rescue fibrogenic gene expression. Conversely, in LX-2 overexpressing SCD1, Aramchol no longer suppressed fibrogenic gene expression. The drug also induced genes in LX-2 that promote cholesterol efflux and inhibited ACAT2, which catalyses cholesterol synthesis. In phHeps, Aramchol also reduced SCD1 and increased PPARG mRNA expression. CONCLUSIONS: Aramchol downregulates SCD1 and elevates PPARG in HSCs, reducing COL1A1 and ACTA2 mRNAs and COL1A1 secretion. These data suggest a direct inhibitory effect of Aramchol in HSCs through SCD1 inhibition, as part of a broader impact on both fibrogenic genes as well as mediators of cholesterol homeostasis. These findings illustrate novel mechanisms of Aramchol activity, including potential antifibrotic activity in patients with NASH and fibrosis. LAY SUMMARY: In this study, we have explored the potential activity of Aramchol, a drug currently in clinical trials for fatty liver disease, in blocking fibrosis, or scarring, by hepatic stellate cells, the principal collagen-producing (i.e. fibrogenic) cell type in liver injury. In both isolated human hepatic stellate cells and in a human hepatic stellate cell line, the drug suppresses the key fat-producing enzyme, stearoyl CoA desaturase 1 (SCD1), which leads to reduced expression of genes and proteins associated with hepatic fibrosis, while inducing the protective gene, PPARγ. The drug loses activity when SCD1 is already reduced by gene knockdown, reinforcing the idea that inhibition of SCD1 is a main mode of activity for Aramchol. These findings strengthen the rationale for testing Aramchol in patients with NASH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA