Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Biochem Funct ; 42(2): e3940, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379257

RESUMEN

Eukaryotic cells utilize oxygen for different functions of cell organelles owing to cellular survival. A balanced oxygen homeostasis is an essential requirement to maintain the regulation of normal cellular systems. Any changes in the oxygen level are stressful and can alter the expression of different homeostasis regulatory genes and proteins. Lack of oxygen or hypoxia results in oxidative stress and formation of hypoxia inducible factors (HIF) and reactive oxygen species (ROS). Substantial cellular damages due to hypoxia have been reported to play a major role in various pathological conditions. There are different studies which demonstrated that the functions of cellular system are disrupted by hypoxia. Currently, study on cellular effects following hypoxia is an important field of research as it not only helps to decipher different signaling pathway modulation, but also helps to explore novel therapeutic strategies. On the basis of the beneficial effect of hypoxia preconditioning of cellular organelles, many therapeutic investigations are ongoing as a promising disease management strategy in near future. Hence, the present review discusses about the effects of hypoxia on different cellular organelles, mechanisms and their involvement in the progression of different diseases.


Asunto(s)
Hipoxia , Oxígeno , Humanos , Hipoxia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxígeno/metabolismo , Estrés Oxidativo , Transducción de Señal , Hipoxia de la Célula , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
2.
Cell Mol Neurobiol ; 43(3): 1019-1035, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35751791

RESUMEN

Neurological disorders have complicated pathophysiology that may involve several genetic mutations. Conventional treatment has limitations as they only treat apparent symptoms. Although, personalized medicine is emerging as a promising neuro-intervention, lack of precision is the major pitfall. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system is evolving as a technological platform that may overcome the therapeutic limitations towards precision medicine. In the future, targeting genes in neurological disorders may be the mainstay of modern therapy. The present review on CRISPR/Cas9 and its application in various neurological disorders may provide a platform for its future clinical relevance towards developing precise and personalized medicine.


Asunto(s)
Edición Génica , Enfermedades del Sistema Nervioso , Humanos , Sistemas CRISPR-Cas/genética , Mutación , Tecnología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/terapia
3.
Cell Mol Neurobiol ; 43(1): 99-113, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35066715

RESUMEN

As the second-leading cause of death, stroke faces several challenges in terms of treatment because of the limited therapeutic interventions available. Previous studies primarily focused on metabolic and blood flow properties as a target for treating stroke, including recombinant tissue plasminogen activator and mechanical thrombectomy, which are the only USFDA approved therapies. These interventions have the limitation of a narrow therapeutic time window, the possibility of hemorrhagic complications, and the expertise required for performing these interventions. Thus, it is important to identify the contributing factors that exacerbate the ischemic outcome and to develop therapies targeting them for regulating cellular homeostasis, mainly neuronal survival and regeneration. Glial cells, primarily microglia, astrocytes, and oligodendrocytes, have been shown to have a crucial role in the prognosis of ischemic brain injury, contributing to inflammatory responses. They play a dual role in both the onset as well as resolution of the inflammatory responses. Understanding the different mechanisms driving these effects can aid in the development of therapeutic targets and further mitigate the damage caused. In this review, we summarize the functions of various glial cells and their contribution to stroke pathology. The review highlights the therapeutic options currently being explored and developed that primarily target glial cells and can be used as neuroprotective agents for the treatment of ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Humanos , Isquemia Encefálica/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Activador de Tejido Plasminógeno/uso terapéutico , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/complicaciones , Neuroglía/metabolismo , Astrocitos/metabolismo
4.
Metab Brain Dis ; 38(3): 805-817, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36745251

RESUMEN

Modulation of cell signaling pathways is the key area of research towards the treatment of neurodegenerative disorders. Altered Nrf2-Keap1-ARE (Nuclear factor erythroid-2-related factor 2-Kelch-like ECH-associated protein 1-Antioxidant responsive element) and SIRT1 (Sirtuin 1) cell signaling pathways are considered to play major role in the etiology and pathogenesis of Alzheimer's disease (AD) and Parkinson's disease (PD). Strikingly, betanin, a betanidin 5-O-ß-D-glucoside compound is reported to show commendable anti-oxidative, anti-inflammatory and anti-apoptotic effects in several disease studies including AD and PD. The present review discusses the pre-clinical studies demonstrating the neuroprotective effects of betanin by virtue of its potential to ameliorate oxidative stress, neuroinflammation, abnormal protein aggregation and cell death. It highlights the direct linkage between the neuroprotective abilities of betanin and upregulation of the Nrf2-Keap1-ARE and SIRT1 signaling pathways. The review further hypothesizes the involvement of the betanin-Nrf2-ARE route in the inhibition of beta-amyloid aggregation through beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), one of the pivotal hallmarks of AD. The present review hereby for the first time elaborately discusses the reported neuroprotective abilities of betanin and decodes the Nrf2 and SIRT1 modulating potential of betanin as a primary mechanism of action behind, hence highlighting it as a novel drug candidate for the treatment of neurodegenerative diseases in the near future.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Neuroprotección , Betacianinas , Proteína 1 Asociada A ECH Tipo Kelch , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Sirtuina 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Transducción de Señal , Estrés Oxidativo
5.
Phytother Res ; 37(12): 5657-5699, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37823581

RESUMEN

Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.


Asunto(s)
Enfermedad de Alzheimer , Curcumina , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Resveratrol/farmacología , Resveratrol/uso terapéutico , Curcumina/farmacología , Curcumina/uso terapéutico
6.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240148

RESUMEN

The increasing comorbidity of alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) associated with traumatic brain injury (TBI) is a serious medical, economic, and social issue. However, the molecular toxicology and pathophysiological mechanisms of comorbid AUD and PTSD are not well understood and the identification of the comorbidity state markers is significantly challenging. This review summarizes the main characteristics of comorbidity between AUD and PTSD (AUD/PTSD) and highlights the significance of a comprehensive understanding of the molecular toxicology and pathophysiological mechanisms of AUD/PTSD, particularly following TBI, with a focus on the role of metabolomics, inflammation, neuroendocrine, signal transduction pathways, and genetic regulation. Instead of a separate disease state, a comprehensive examination of comorbid AUD and PTSD is emphasized by considering additive and synergistic interactions between the two diseases. Finally, we propose several hypotheses of molecular mechanisms for AUD/PTSD and discuss potential future research directions that may provide new insights and translational application opportunities.


Asunto(s)
Alcoholismo , Lesiones Traumáticas del Encéfalo , Trastornos por Estrés Postraumático , Humanos , Alcoholismo/complicaciones , Alcoholismo/epidemiología , Alcoholismo/metabolismo , Comorbilidad , Consumo de Bebidas Alcohólicas , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/epidemiología
7.
Exp Brain Res ; 240(1): 113-122, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34633467

RESUMEN

Although the etiology of Parkinson's disease (PD) is poorly understood, studies in animal models revealed loss of dopamine and the dopaminergic neurons harbouring the neurotransmitter to be the principal cause behind this neuro-motor disorder. Neuroinflammation with glial cell activation is suggested to play a significant role in dopaminergic neurodegeneration. Several biomolecules have been reported to confer dopaminergic neuroprotection in different animal models of PD, owing to their anti-inflammatory potentials. Garcinol is a tri-isoprenylated benzophenone isolated from Garcinia sp. and accumulating evidences suggest that this molecule could provide neuroprotection by modulating oxidative stress and inflammation. However, direct evidence of dopaminergic neuroprotection by garcinol in the pre-clinical model of PD is not yet reported. The present study aims to investigate whether administration of garcinol in the MPTP mouse model of PD may ameliorate the cardinal motor behavioural deficits and prevent the loss of dopaminergic neurons. As expected, garcinol blocked the parkinsonian motor behavioural deficits which include akinesia, catalepsy, and rearing anomalies in the mice model. Most importantly, the degeneration of dopaminergic cell bodies in the substantia nigra region was significantly prevented by garcinol. Furthermore, garcinol reduced the inflammatory marker, glial fibrillary acidic protein, in the substantia nigra region. Since glial hyperactivation-mediated inflammation is inevitably associated with the loss of dopaminergic neurons, our study suggests the anti-inflammatory role of garcinol in facilitating dopaminergic neuroprotection in PD mice. Hence, in the light of the present study, it is suggested that garcinol is an effective anti-parkinsonian agent to block motor behavioural deficits and dopaminergic neurodegeneration in PD.


Asunto(s)
Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Antiinflamatorios , Modelos Animales de Enfermedad , Dopamina , Neuronas Dopaminérgicas , Ratones , Ratones Endogámicos C57BL , Neuroprotección , Sustancia Negra , Terpenos
8.
Nanotechnology ; 33(47)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35977452

RESUMEN

This work employs femtosecond transient absorption spectroscopy to investigate the ultrafast carrier dynamics of bound states in In0.14Ga0.86N/GaN quantum wells. The ground state (GS) dynamics usually dominate these characteristics, appearing as a prominent peak in the absorption spectra. It is observed that the excited state also contributes to the overall dynamics, with its signature showing up later. The contributions of both the ground and excited states in the absorption spectra and time-resolved dynamics are decoupled in this work. The carrier density in the GS first increases and then decays with time. The carriers populate the excited state only at a delayed time. The dynamics are studied considering the Quantum-Confined Stark Effect-induced wavelength shift in the absorption. The relevant microscopic optoelectronic processes are understood phenomenologically, and their time constants are extracted. An accurate study of these dynamics provides fundamentally essential insights into the time-resolved dynamics in quantum-confined heterostructures and can facilitate the development of efficient light sources using GaN heterostructures.

9.
Metab Brain Dis ; 37(6): 1887-1900, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35622265

RESUMEN

Dopaminergic neuroprotection is the main interest in designing novel therapeutics against Parkinson's disease (PD). In the process of dopaminergic degeneration, mitochondrial dysfunctions and inflammation are significant. While the existing drugs provide symptomatic relief against PD, a therapy conferring total neuroprotection by targeting multiple degenerative pathways is still lacking. Garcinia morella is a common constituent of Ayurvedic medication and has been used for the treatment of inflammatory disorders. The present study investigates whether administration of G. morella fruit extract (GME) in MPTP mouse model of PD protects against dopaminergic neurodegeneration, including the underlying pathophysiologies, and reverses the motor behavioural abnormalities. Administration of GME prevented the loss of dopaminergic cell bodies in the substantia nigra and its terminals in the corpus striatum of PD mice. Subsequently, reversal of parkinsonian behavioural abnormalities, viz. akinesia, catalepsy, and rearing, was observed along with the recovery of striatal dopamine and its metabolites in the experimental model. Furthermore, reduced activity of the mitochondrial complex II in the nigrostriatal pathway of brain of the mice was restored after the administration of GME. Also, MPTP-induced enhanced activation of Glial fibrillary acidic protein (GFAP) and neuronal nitric oxide synthase (nNOS) in the nigrostriatal pathway, which are the markers of inflammatory stress, were found to be ameliorated on GME treatment. Thus, our study presented a novel mode of dopaminergic neuroprotection by G. morella in PD by targeting the mitochondrial dysfunctions and neuroinflammation, which are considered to be intricately associated with the loss of dopaminergic neurons.


Asunto(s)
Garcinia , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Garcinia/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neuroprotección , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo
10.
Immunology ; 162(2): 160-178, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32939758

RESUMEN

Neurodegeneration is characterized by gradual onset and limited availability of specific biomarkers. Apart from various aetiologies such as infection, trauma, genetic mutation, the interaction between the immune system and CNS is widely associated with neuronal damage in neurodegenerative diseases. The immune system plays a distinct role in disease progression and cellular homeostasis. It induces cellular and humoral responses, and enables tissue repair, cellular healing and clearance of cellular detritus. Aberrant and chronic activation of the immune system can damage healthy neurons. The pro-inflammatory mediators secreted by chief innate immune components, the complement system, microglia and inflammasome can augment cytotoxicity. Furthermore, these inflammatory mediators accelerate microglial activation resulting in progressive neuronal loss. Various animal studies have been carried out to unravel the complex pathology and ascertain biomarkers for these harmful diseases, but have had limited success. The present review will provide a thorough understanding of microglial activation, complement system and inflammasome generation, which lead the healthy brain towards neurodegeneration. In addition to this, possible targets of immune components to confer a strategic treatment regime for the alleviation of neuronal damage are also summarized.


Asunto(s)
Enfermedades Neurodegenerativas/inmunología , Animales , Encéfalo/inmunología , Proteínas del Sistema Complemento/inmunología , Humanos , Inflamasomas/inmunología , Inflamación/inmunología , Mediadores de Inflamación/inmunología , Microglía/inmunología , Neuronas/inmunología
11.
Eur J Neurosci ; 53(4): 1279-1299, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32979852

RESUMEN

Stroke is an event causing a disturbance in cerebral function leading to death and disability worldwide. Both acute kidney injury and chronic kidney disease (CKD) are associated with an increased risk of stroke and cerebrovascular events. The underlying mechanistic approach between impaired renal function and stroke is limitedly explored and has attracted researchers to learn more for developing therapeutic intervention. Common risk factors such as hypertension, hyperphosphatemia, atrial fibrillation, arteriosclerosis, hyperhomocysteinemia, blood-brain barrier disruption, inflammation, etc. are observed in the general population, but are high in renal failure patients. Also, risk factors like bone mineral metabolism, uremic toxins, and anemia, along with the process of dialysis in CKD patients, eventually increases the risk of stroke. Therefore, early detection of risks associated with stroke in CKD is imperative, which may decrease the mortality associated with it. This review highlights mechanisms by which kidney dysfunction can lead to cerebrovascular events and increase the risk of stroke in renal impairment.


Asunto(s)
Insuficiencia Renal Crónica , Accidente Cerebrovascular , Humanos , Riñón , Diálisis Renal , Insuficiencia Renal Crónica/complicaciones , Factores de Riesgo
12.
Cell Biol Toxicol ; 37(5): 653-678, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33864549

RESUMEN

Chronic inflammation (CI) is a primary contributing factor involved in multiple diseases like cancer, stroke, diabetes, Alzheimer's disease, allergy, asthma, autoimmune diseases, coeliac disease, glomerulonephritis, sepsis, hepatitis, inflammatory bowel disease, reperfusion injury, and transplant rejections. Despite several expansions in our understanding of inflammatory disorders and their mediators, it seems clear that numerous proteins participate in the onset of CI. One crucial protein pyruvate kinase M2 (PKM2) much studied in cancer is also found to be inextricably woven in the onset of several CI's. It has been found that PKM2 plays a significant role in several disorders using a network of proteins that interact in multiple ways. For instance, PKM2 forms a close association with epidermal growth factor receptors (EGFRs) for uncontrolled growth and proliferation of tumor cells. In neurodegeneration, PKM2 interacts with apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) to onset Alzheimer's disease pathogenesis. The cross-talk of protein tyrosine phosphatase 1B (PTP1B) and PKM2 acts as stepping stones for the commencement of diabetes. Perhaps PKM2 stores the potential to unlock the pathophysiology of several diseases. Here we provide an overview of the notoriously convoluted biology of CI's and PKM2. The cross-talk of PKM2 with several proteins involved in stroke, Alzheimer's, cancer, and other diseases has also been discussed. We believe that considering the importance of PKM2 in inflammation-related diseases, new options for treating various disorders with the development of more selective agents targeting PKM2 may appear.


Asunto(s)
Neoplasias , Piruvato Quinasa , Receptores ErbB , Humanos , Inflamación , Piruvato Quinasa/metabolismo , Transducción de Señal
13.
Nano Lett ; 19(11): 7852-7858, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31573819

RESUMEN

We present experimental results confirming extreme quantum confinement in GaN/AlxGa1-xN (x = 0.65 and 1.0) nanowire and planar heterostructures, where the GaN layer thickness is of the order of a monolayer. The results were obtained from temperature- and excitation-dependent and time-resolved photoluminescence measurements. In the GaN/AlN nanowire heterostructure array sample, the measured emission peak at 300 K is ∼5.18-5.28 eV. This is in excellent agreement with the calculated optical gap of 5.23 eV and 160-260 meV below the calculated electronic gap of 5.44 eV, suggesting that the observed emission is excitonic in nature with an exciton binding energy of ∼160-260 meV. Similarly, in the monolayer GaN/Al0.65Ga0.35N planar heterostructure, the measured emission peak at 300 K is 4.785 eV and in good agreement with the calculated optical gap of 4.68 eV and 95 meV below the calculated electronic gap of 4.88 eV. The estimated exciton binding energy is 95 meV and in close agreement with our theoretical calculations. Excitation-dependent and time-resolved photoluminescence data support the presence of excitonic transitions. Our results indicate that deep-ultraviolet excitonic light sources and microcavity devices can be realized with heterostructures incorporating monolayer-thick GaN.

14.
J Neurosci Res ; 97(2): 116-127, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30320448

RESUMEN

Ischemic stroke is devastating and a major cause of morbidity and mortality worldwide. To date, only clot retrieval devices and/or intravenous tissue plasminogen activators (tPA) have been approved by the US-FDA for the treatment of acute ischemic stroke. Therefore, there is an urgent need to develop an effective treatment for stroke that can have limited shortcomings and broad spectrum of applications. Interferon-beta (IFN-ß), an endogenous cytokine and a key anti-inflammatory agent, contributes toward obviating deleterious stroke outcomes. Therefore, exploring the role of IFN-ß may be a promising alternative approach for stroke intervention in the future. In the present review, we have discussed about IFN-ß along with its different mechanistic roles in ischemic stroke. Furthermore, therapeutic approaches targeting the inflammatory cascade with IFN-ß therapy that may be helpful in improving stroke outcome are also discussed.


Asunto(s)
Isquemia Encefálica/fisiopatología , Interferón beta/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Isquemia Encefálica/metabolismo , Humanos , Interferón beta/clasificación , Interferón beta/metabolismo , Accidente Cerebrovascular/metabolismo
15.
Microsc Microanal ; 25(3): 705-710, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30867078

RESUMEN

Highly-directional image artifacts such as ion mill curtaining, mechanical scratches, or image striping from beam instability degrade the interpretability of micrographs. These unwanted, aperiodic features extend the image along a primary direction and occupy a small wedge of information in Fourier space. Deleting this wedge of data replaces stripes, scratches, or curtaining, with more complex streaking and blurring artifacts-known within the tomography community as "missing wedge" artifacts. Here, we overcome this problem by recovering the missing region using total variation minimization, which leverages image sparsity-based reconstruction techniques-colloquially referred to as compressed sensing (CS)-to reliably restore images corrupted by stripe-like features. Our approach removes beam instability, ion mill curtaining, mechanical scratches, or any stripe features and remains robust at low signal-to-noise. The success of this approach is achieved by exploiting CS's inability to recover directional structures that are highly localized and missing in Fourier Space.

16.
Int J Neurosci ; 129(10): 1039-1044, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31203689

RESUMEN

Aim: Calcineurin (CaN) is a threonine/phosphatase which play roles in neuronal homeostasis. Ischemic stroke induces hyperactivation of CaN which further triggers apoptotic signaling. CaN inhibition has limited therapeutic output and neurotoxicity due to its intricate roles in the neuronal network and requires a strategic modulation. Intra-arterial (IA) mesenchymal stem cells (MSCs) have shown to interact with the milieu in a paracrine manner as compared to CaN inhibitors to ameliorate the neuronal damage triggered by ischemia/reperfusion injury. The present study investigates the role of IA MSCs in modulating neuronal CaN after stroke onset. Materials and methods: To validate, middle-aged ovariectomized female rats exposed to MCAo (90 min) were treated with IA MSCs (1 × 105 MSCs) or phosphate-buffered saline (PBS) at 6 hours to check CaN expression in different groups.Tests for assessing functional and motor coordination were performed along with biochemical estimations. Furthermore, an inhibition study by non-selective inhibitor of neuronal calcium channel, flunarizine, was performed to explore the possible underlying mechanism by which IA MSCs may interact with CaN. Results: The study suggests that IA MSCs seemingly reduce the expression of CaN after ischemic stroke. IA MSCs have shown to improve the functional outcome and normalize oxidative parameters. Conclusion: Our study provides a preliminary evidence of role of IA MSCs in modulating CaN expression.


Asunto(s)
Isquemia Encefálica/metabolismo , Calcineurina/biosíntesis , Trasplante de Células Madre Mesenquimatosas/métodos , Neuronas/metabolismo , Neuroprotección/fisiología , Accidente Cerebrovascular/metabolismo , Animales , Isquemia Encefálica/terapia , Femenino , Infusiones Intraarteriales , Ovariectomía/efectos adversos , Ovariectomía/tendencias , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/terapia
17.
Int J Mol Sci ; 19(9)2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30217051

RESUMEN

A risk of ischemic stroke increases exponentially after menopause. Even a mild-ischemic stroke can result in increased frailty. Frailty is a state of increased vulnerability to adverse outcomes, which subsequently increases risk of cerebrovascular events and severe cognitive decline, particularly after menopause. Several interventions to reduce frailty and subsequent risk of stroke and cognitive decline have been proposed in laboratory animals and patients. One of them is whole body vibration (WBV). WBV improves cerebral function and cognitive ability that deteriorates with increased frailty. The goal of the current study is to test the efficacy of WBV in reducing post-ischemic stroke frailty and brain damage in reproductively senescent female rats. Reproductively senescent Sprague-Dawley female rats were exposed to transient middle cerebral artery occlusion (tMCAO) and were randomly assigned to either WBV or no-WBV groups. Animals placed in the WBV group underwent 30 days of WBV (40 Hz) treatment performed twice daily for 15 min each session, 5 days each week. The motor functions of animals belonging to both groups were tested intermittently and at the end of the treatment period. Brains were then harvested for inflammatory markers and histopathological analysis. The results demonstrate a significant reduction in inflammatory markers and infarct volume with significant increases in brain-derived neurotrophic factor and improvement in functional activity after tMCAO in middle-aged female rats that were treated with WBV as compared to the no-WBV group. Our results may facilitate a faster translation of the WBV intervention for improved outcome after stroke, particularly among frail women.


Asunto(s)
Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/terapia , Vibración/uso terapéutico , Animales , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/terapia , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Ratas , Ratas Sprague-Dawley
18.
Int J Mol Sci ; 19(5)2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29710856

RESUMEN

Smoking is a preventable risk factor for stroke and smoking-derived nicotine exacerbates post-ischemic damage via inhibition of estrogen receptor beta (ER-β) signaling in the brain of female rats. ER-β regulates inflammasome activation in the brain. Therefore, we hypothesized that chronic nicotine exposure activates the inflammasome in the brain, thus exacerbating ischemic brain damage in female rats. To test this hypothesis, adult female Sprague-Dawley rats (6⁻7 months old) were exposed to nicotine (4.5 mg/kg/day) or saline for 16 days. Subsequently, brain tissue was collected for immunoblot analysis. In addition, another set of rats underwent transient middle cerebral artery occlusion (tMCAO; 90 min) with or without nicotine exposure. One month after tMCAO, histopathological analysis revealed a significant increase in infarct volume in the nicotine-treated group (64.24 ± 7.3 mm³; mean ± SEM; n = 6) compared to the saline-treated group (37.12 ± 7.37 mm³; n = 7, p < 0.05). Immunoblot analysis indicated that nicotine increased cortical protein levels of caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC) and pro-inflammatory cytokines interleukin (IL)-1β by 88% (p < 0.05), 48% (p < 0.05) and 149% (p < 0.05), respectively, when compared to the saline-treated group. Next, using an in vitro model of ischemia in organotypic slice cultures, we tested the hypothesis that inhibition of nicotine-induced inflammasome activation improves post-ischemic neuronal survival. Accordingly, slices were exposed to nicotine (100 ng/mL; 14⁻16 days) or saline, followed by treatment with the inflammasome inhibitor isoliquiritigenin (ILG; 24 h) prior to oxygen-glucose deprivation (OGD; 45 min). Quantification of neuronal death demonstrated that inflammasome inhibition significantly decreased nicotine-induced ischemic neuronal death. Overall, this study shows that chronic nicotine exposure exacerbates ischemic brain damage via activation of the inflammasome in the brain of female rats.


Asunto(s)
Receptor beta de Estrógeno/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Inflamasomas/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Fumar/efectos adversos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Femenino , Inflamasomas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
19.
Phys Rev Lett ; 119(6): 067701, 2017 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-28949600

RESUMEN

A spin-polarized laser offers inherent control of the output circular polarization. We have investigated the output polarization characteristics of a bulk GaN-based microcavity polariton diode laser at room temperature with electrical injection of spin-polarized electrons via a FeCo/MgO spin injector. Polariton laser operation with a spin-polarized current is characterized by a threshold of ∼69 A/cm^{2} in the light-current characteristics, a significant reduction of the electroluminescence linewidth and blueshift of the emission peak. A degree of output circular polarization of ∼25% is recorded under remanent magnetization. A second threshold, due to conventional photon lasing, is observed at an injection of ∼7.2 kA/cm^{2}. The variation of output circular and linear polarization with spin-polarized injection current has been analyzed with the carrier and exciton rate equations and the Gross-Pitaevskii equations for the condensate and there is good agreement between measured and calculated data.

20.
Proc Natl Acad Sci U S A ; 110(8): 2735-40, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23382183

RESUMEN

A spatial potential trap is formed in a 6.0-µm Al(Ga)N nanowire by varying the Al composition along its length during epitaxial growth. The polariton emission characteristics of a dielectric microcavity with the single nanowire embedded in-plane have been studied at room temperature. Excitation is provided at the Al(Ga)N end of the nanowire, and polariton emission is observed from the lowest bandgap GaN region within the potential trap. Comparison of the results with those measured in an identical microcavity with a uniform GaN nanowire and having an identical exciton-photon detuning suggests evaporative cooling of the polaritons as they are transported into the trap in the Al(Ga)N nanowire. Measurement of the spectral characteristics of the polariton emission, their momentum distribution, first-order spatial coherence, and time-resolved measurements of polariton cooling provides strong evidence of the formation of a near-equilibrium Bose-Einstein condensate in the GaN region of the nanowire at room temperature. In contrast, the condensate formed in the uniform GaN nanowire-dielectric microcavity without the spatial potential trap is only in self-equilibrium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA