Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 177(3): 683-696.e18, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30929902

RESUMEN

Microbiota and intestinal epithelium restrict pathogen growth by rapid nutrient consumption. We investigated how pathogens circumvent this obstacle to colonize the host. Utilizing enteropathogenic E. coli (EPEC), we show that host-attached bacteria obtain nutrients from infected host cell in a process we termed host nutrient extraction (HNE). We identified an inner-membrane protein complex, henceforth termed CORE, as necessary and sufficient for HNE. The CORE is a key component of the EPEC injectisome, however, here we show that it supports the formation of an alternative structure, composed of membranous nanotubes, protruding from the EPEC surface to directly contact the host. The injectisome and flagellum are evolutionarily related, both containing conserved COREs. Remarkably, CORE complexes of diverse ancestries, including distant flagellar COREs, could rescue HNE capacity of EPEC lacking its native CORE. Our results support the notion that HNE is a widespread virulence strategy, enabling pathogens to thrive in competitive niches.


Asunto(s)
Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/metabolismo , Nutrientes/metabolismo , Aminoácidos/metabolismo , Adhesión Bacteriana/fisiología , Escherichia coli Enteropatógena/crecimiento & desarrollo , Escherichia coli Enteropatógena/metabolismo , Fluoresceínas/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Fluorescente
2.
Mol Cell ; 83(22): 4158-4173.e7, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37949068

RESUMEN

Sporulating bacteria can retreat into long-lasting dormant spores that preserve the capacity to germinate when propitious. However, how the revival transcriptional program is memorized for years remains elusive. We revealed that in dormant spores, core RNA polymerase (RNAP) resides in a central chromosomal domain, where it remains bound to a subset of intergenic promoter regions. These regions regulate genes encoding for most essential cellular functions, such as rRNAs and tRNAs. Upon awakening, RNAP recruits key transcriptional components, including sigma factor, and progresses to express the adjacent downstream genes. Mutants devoid of spore DNA-compacting proteins exhibit scattered RNAP localization and subsequently disordered firing of gene expression during germination. Accordingly, we propose that the spore chromosome is structured to preserve the transcriptional program by halting RNAP, prepared to execute transcription at the auspicious time. Such a mechanism may sustain long-term transcriptional programs in diverse organisms displaying a quiescent life form.


Asunto(s)
Bacillus subtilis , Esporas Bacterianas , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo
3.
Infection ; 52(2): 345-384, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38270780

RESUMEN

PURPOSE: This study aims to comprehensively review the multifaceted factors underlying the successful colonization and infection process of Helicobacter pylori (H. pylori), a prominent Gram-negative pathogen in humans. The focus is on elucidating the functions, mechanisms, genetic regulation, and potential cross-interactions of these elements. METHODS: Employing a literature review approach, this study examines the intricate interactions between H. pylori and its host. It delves into virulence factors like VacA, CagA, DupA, Urease, along with phase variable genes, such as babA, babC, hopZ, etc., giving insights about the bacterial perspective of the infection The association of these factors with the infection has also been added in the form of statistical data via Funnel and Forest plots, citing the potential of the virulence and also adding an aspect of geographical biasness to the virulence factors. The biochemical characteristics and clinical relevance of these factors and their effects on host cells are individually examined, both comprehensively and statistically. RESULTS: H. pylori is a Gram-negative, spiral bacterium that successfully colonises the stomach of more than half of the world's population, causing peptic ulcers, gastric cancer, MALT lymphoma, and other gastro-duodenal disorders. The clinical outcomes of H. pylori infection are influenced by a complex interplay between virulence factors and phase variable genes produced by the infecting strain and the host genetic background. A meta-analysis of the prevalence of all the major virulence factors has also been appended. CONCLUSION: This study illuminates the diverse elements contributing to H. pylori's colonization and infection. The interplay between virulence factors, phase variable genes, and host genetics determines the outcome of the infection. Despite biochemical insights into many factors, their comprehensive regulation remains an understudied area. By offering a panoramic view of these factors and their functions, this study enhances understanding of the bacterium's perspective, i.e. H. pylori's journey from infiltration to successful establishment within the host's stomach.


Asunto(s)
Helicobacter pylori , Úlcera Péptica , Neoplasias Gástricas , Humanos , Virulencia/genética , Helicobacter pylori/genética , Úlcera Péptica/microbiología , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Antígenos Bacterianos/genética
4.
Mol Biol Rep ; 49(8): 7887-7898, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35637316

RESUMEN

BACKGROUND: Disease-specific human induced pluripotent stem cells (hiPSCs) can be generated directly from individuals with known disease characteristics or alternatively be modified using genome editing approaches to introduce disease causing genetic mutations to study the biological response of those mutations. The genome editing procedure in hiPSCs is still inefficient, particularly when it comes to homology directed repair (HDR) of genetic mutations or targeted transgene insertion in the genome and single cell cloning of edited cells. In addition, genome editing processes also involve additional cellular stresses such as poor cell viability and genetic stability of hiPSCs. Therefore, efficient workflows are desired to increase genome editing application to hiPSC disease models and therapeutic applications. METHODS AND RESULTS: To this end, we demonstrate an efficient workflow for feeder-free single cell clone generation and expansion in both CRISPR-mediated knock-out (KO) and knock-in (KI) hiPSC lines. Using StemFlex medium and CloneR supplement in conjunction with Matrigel cell culture matrix, we show that cell viability and expansion during single-cell cloning in edited and unedited cells is significantly enhanced. Keeping all factors into account, we have successfully achieved hiPSC single-cell survival and cloning in both edited and unedited cells with rates as maximum as 70% in less than 2 weeks. CONCLUSION: This simplified and efficient workflow will allow for a new level of sophistication in generating hiPSC-based disease models to promote rapid advancement in basic research and also the development of novel cellular therapeutics.


Asunto(s)
Células Madre Pluripotentes Inducidas , Sistemas CRISPR-Cas/genética , Clonación Molecular , Edición Génica/métodos , Genoma Humano , Humanos
5.
Proc Natl Acad Sci U S A ; 116(28): 14228-14237, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221751

RESUMEN

Bacterial spores can remain dormant for years but possess the remarkable ability to germinate, within minutes, once nutrients become available. However, it still remains elusive how such instant awakening of cellular machineries is achieved. Utilizing Bacillus subtilis as a model, we show that YwlE arginine (Arg) phosphatase is crucial for spore germination. Accordingly, the absence of the Arg kinase McsB accelerated the process. Arg phosphoproteome of dormant spores uncovered a unique set of Arg-phosphorylated proteins involved in key biological functions, including translation and transcription. Consequently, we demonstrate that during germination, YwlE dephosphorylates an Arg site on the ribosome-associated chaperone Tig, enabling its association with the ribosome to reestablish translation. Moreover, we show that Arg dephosphorylation of the housekeeping σ factor A (SigA), mediated by YwlE, facilitates germination by activating the transcriptional machinery. Subsequently, we reveal that transcription is reinitiated at the onset of germination and its recommencement precedes that of translation. Thus, Arg dephosphorylation elicits the most critical stages of spore molecular resumption, placing this unusual post-translational modification as a major regulator of a developmental process in bacteria.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/genética , Biosíntesis de Proteínas , Proteínas Quinasas/genética , Esporas Bacterianas/genética , Arginina/genética , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Monoéster Fosfórico Hidrolasas/genética , Fosforilación/genética , Ribosomas/genética , Factor sigma/genética , Esporas Bacterianas/crecimiento & desarrollo
6.
J Infect Dis ; 214(2): 196-204, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27056952

RESUMEN

Contact with host cells is recognized as a signal capable of triggering expression of bacterial genes important for host pathogen interaction. Adherence of Helicobacter pylori to the gastric epithelial cell line AGS strongly upregulated expression of a gene, HP0102, in the adhered bacteria in all strains examined, including several Indian clinical isolates. The gene is highly conserved and ubiquitously present in all 69 sequenced H. pylori genomes at the same genomic locus, as well as in 15 Indian clinical isolates. The gene is associated with 2 distinct phenotypes related to pathogenicity. In AGS cell-adhered H. pylori, it has a role in upregulation of cagA expression from a specific σ(28)-RNAP promoter and consequent induction of the hummingbird phenotype in the infected AGS cells. Furthermore, HP0102 has a role in chemotaxis and a ΔHP0102 mutant exhibited low acid-escape response that might account for the poor colonization efficiency of the mutant.


Asunto(s)
Adhesión Bacteriana , Células Epiteliales/microbiología , Helicobacter pylori/patogenicidad , Activación Transcripcional , Factores de Virulencia/biosíntesis , Línea Celular , Quimiotaxis , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Helicobacter pylori/fisiología , Humanos , Factores de Virulencia/genética
7.
J Infect Dis ; 211(11): 1779-89, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25512629

RESUMEN

Adherence of Helicobacter pylori to the gastric epithelial cell line AGS strongly induces expression of fliK encoding a flagellar hook-length control protein. FliK has a role in triggering dissociation of the alternate sigma factor, σ(28), from a nonfunctional σ(28)-FlgM complex, releasing free, functional σ(28). The σ(28)-RNA polymerase initiates transcription of cagA, the major virulence gene, from a promoter identified in this study. Consequently, significant up-regulation of cagA was observed in AGS-adhered H. pylori. Direct binding of σ(28) to the cagA promoter was demonstrated by chromatin immunoprecipitation and the transcription start site was identified by 5' RACE (rapid amplification of complementary DNA ends). The σ(28)-dependent cagA promoter was active specifically in AGS-adhered H. pylori, and this motif might be associated with high cagA expression and severity of disease. These results also indicate that H. pylori has evolved to integrate expression of the major virulence gene cagA with the flagellar regulatory circuit, essential for colonization of the human host.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Interacciones Huésped-Patógeno/fisiología , Factor sigma/metabolismo , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Línea Celular Tumoral , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia , Factor sigma/genética , Estómago/citología
8.
Toxicol Int ; 20(1): 11-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23833432

RESUMEN

INTRODUCTION: Wellbutrin (bupropion hydrochloride; WB), an anti-depressant of the aminoketone class is new highly selective norepinephrine and dopamine reuptake inhibitor; it is effective in the treatment of patients with major depression. MATERIALS AND METHODS: To investigate the in vitro effects of WB in human cultured peripheral blood lymphocytes and human cortical neural (HCN2) cell lines, micronucleus, sister chromatid exchange analysis, cellular viability, and comet assays were employed. The present study is to our knowledge, the first report on WB genotoxicity in cultured human peripheral blood lymphocytes and its cytotoxicity in the HCN2 cell line. We have also investigated the genotoxic potential of WB to induce chromosomal aberrations. RESULTS: WB-induced cytotoxicity (measured as reduction of the nuclear division index) possibly prevented the division of damaged cells. CONCLUSION: We conclude that although, WB exerts potential genotoxic effects in cultured lymphocytes, its cytogenetic effects are very unlikely to occur in blood cultures of WB-administered subjects.

9.
Front Immunol ; 13: 933347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36798518

RESUMEN

Intramuscularly administered vaccines stimulate robust serum neutralizing antibodies, yet they are often less competent in eliciting sustainable "sterilizing immunity" at the mucosal level. Our study uncovers a strong temporary neutralizing mucosal component of immunity, emanating from intramuscular administration of an mRNA vaccine. We show that saliva of BNT162b2 vaccinees contains temporary IgA targeting the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus-2 spike protein and demonstrate that these IgAs mediate neutralization. RBD-targeting IgAs were found to associate with the secretory component, indicating their bona fide transcytotic origin and their polymeric multivalent nature. The mechanistic understanding of the high neutralizing activity provided by mucosal IgA, acting at the first line of defense, will advance vaccination design and surveillance principles and may point to novel treatment approaches and new routes of vaccine administration and boosting.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , ARN Mensajero , Inmunoglobulina A
10.
Mol Cytogenet ; 14(1): 28, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34020686

RESUMEN

BACKGROUND: The translocation t(8;21)(q22;q22) is one of the most frequent chromosomal abnormalities associated with acute myeloid leukemia (AML) sub type M2. About 3-5 % of cases with additional chromosomal abnormalities, including structural and numerical ones, are reported to include a complex translocation t(8;21;N). CASE PRESENTATION: Here we report a chromosome rearrangement observed in a 19 years-old female diagnosed with AML-M2. When subjected to (molecular) cytogenetic analyses a complex three-way translocation involving chromosomes 8, 17 and 21 was detected, forming not a t(8;21;17) as one would expect. Real time-polymerase chain reaction analysis using 6 AML specific markers showed the presence of RUNX1/RUNX1T1 fusion gene transcripts identical to those found in classical translocation t(8;21) coupled with presence of FLT3-ITD mutation identified by fragment analysis. CONCLUSIONS: The present case highlights importance of complex rearrangements rarely encountered in AML, suggesting that all involved regions harbor critical candidate genes regulating the pathogenesis of AML, leading to novel as well as well-known leukemia associated chromosomal aberrations.

11.
J Hum Reprod Sci ; 13(3): 209-215, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33311907

RESUMEN

BACKGROUND: Human reproduction is the most intricate event as ~ 20% of human pregnancies end in miscarriages for which chromosomal anomalies are a common factor. The chromosomal variations associated with reproductive failures include translocations, inversions, supernumerary marker chromosomes, heterochromatic polymorphisms, etc., Till date, the significance of heteromorphic variants in reproductive failures is unclear. AIM: The aim of this study is to investigate the role of chromosomal anomalies and polymorphic variations in reproductive failure. MATERIALS AND METHODS: Chromosomal analysis using GTG banding was performed on 638 couples (1276 individuals). RESULTS: In the present study, 138 of 1276 individuals showed chromosomal variations with respect to heterochromatic variants and Robertsonian translocations. The most common variants observed across the population studied were the pericentric inversion of the chromosome 9 [inv(9)(p11q13), 3.68%] followed by pstk + on the short arm of chromosome 15 (15pstk+, 1.95%) and Robertsonian translocation of chromosomes 13 and 14 [rob(13;14)(q10;q10), 1.25%]. The maximum percentage of heterochromatic variation was observed in females with recurrent pregnancy loss (Groups A, 4.78%) and males with wives having recurrent miscarriages (Group B, 3.68%) and the minimum was recorded in patients with in vitro fertilization (IVF) failures (Group C, 0.23%) and couples having a history of the malformed child (Group F, 0.23%). CONCLUSIONS: High level of chromosomal polymorphic variations in patients with reproductive failures warrants their in-depth analysis to nail down the causative factors. Hence, cytogenetic analysis coupled with genetic counseling becomes indispensable for patients suffering from infertility, reproductive failures and pregnancy losses before IVF treatment to rule out the carrier status.

12.
Stem Cell Res ; 50: 102124, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33338925

RESUMEN

ß-thalassemia (BT) is a hereditary blood disorder caused by mutations in the ß-globin (HBB) gene leading to severely reduced or no synthesis of the ß-chain of adult hemoglobin. IVS1-5 (G > C) is the most common BT mutation in Indian population and yet no patient-specific cellular models have been generated. Here, we have established an induced pluripotent stem cell (iPSC) line, IGIBi002-A from a thalassemia patient with a homozygous IVS1-5(G > C) mutation. Characterization of IGIBi002-A demonstrated that these iPSCs are free of exogenous reprogramming genes and expressed pluripotent stem cell markers, exhibited a normal karyotype and were potential of three germ layer differentiation.

13.
Cell Rep ; 27(2): 334-342.e10, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30929979

RESUMEN

We have previously described the existence of membranous nanotubes, bridging adjacent bacteria, facilitating intercellular trafficking of nutrients, cytoplasmic proteins, and even plasmids, yet components enabling their biogenesis remain elusive. Here we reveal the identity of a molecular apparatus providing a platform for nanotube biogenesis. Using Bacillus subtilis (Bs), we demonstrate that conserved components of the flagellar export apparatus (FliO, FliP, FliQ, FliR, FlhB, and FlhA), designated CORE, dually serve for flagellum and nanotube assembly. Mutants lacking CORE genes, but not other flagellar components, are deficient in both nanotube production and the associated intercellular molecular trafficking. In accord, CORE components are located at sites of nanotube emergence. Deleting COREs of distinct species established that CORE-mediated nanotube formation is widespread. Furthermore, exogenous COREs from diverse species could restore nanotube generation and functionality in Bs lacking endogenous CORE. Our results demonstrate that the CORE-derived nanotube is a ubiquitous organelle that facilitates intercellular molecular trade across the bacterial kingdom.


Asunto(s)
Proteínas Bacterianas/metabolismo , Nanotubos/química
14.
Curr Opin Microbiol ; 42: 1-6, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28961452

RESUMEN

Bacteria use elaborate molecular machines for intercellular contact-dependent interactions. We discuss a relatively less explored type of intercellular connections mediated by tubular membranous bridges, termed nanotubes. Increasing evidence suggests that nanotube structures mediate cytoplasmic molecular trade among neighboring cells of the same and different species. Further, nanotubes were found to facilitate both antagonistic and cooperative interspecies interactions, thereby allowing the emergence of new non-heritable phenotypes in multicellular bacterial communities. We propose that nanotube-mediated cytoplasmic sharing represents a widespread form of bacterial interactions in nature, providing an enormous potential for the emergence of new features. Here we review the current knowledge on bacterial nanotubes, and highlight the gaps in our current understanding of their operation.


Asunto(s)
Bacterias/citología , Fenómenos Fisiológicos Bacterianos , Nanotubos , Animales , Bacillus/fisiología , Bacterias/metabolismo , Transporte Biológico , Comunicación Celular , Membrana Celular/fisiología , Citoplasma/fisiología , Humanos , Interacciones Microbianas/fisiología
15.
Brief Funct Genomics ; 18(4): 230-239, 2018 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-30462152

RESUMEN

Diabetes and colon cancer are the leading cause of mortality worldwide. According to World Health Organization, the number of patients with diabetes and cancer is going to be elevated by 50% in 2020. However, several flavonoids have been known to be useful in reducing the chance of cancer/diabetes but the hunt of a single biomolecule that can act as therapeutic and preventive molecules for future epidemic continues. In this review, we aim to perform an illustration of all researches done that target molecular signaling using luteolin in cancer/diabetes and predicted target protein using PharmMapper. The search confirms that luteolin can be a remedial molecule for both cancer and diabetes via acting on variety of signaling pathway. Furthermore, we also intend to illustrate/compare the predicted and verified molecular modes of action of luteolin. Fluorescence in situ hybridization analysis confirms the expression of CCND1 in colon cancer while immunofluorescence analysis confirms the CDK4 in diabetes. Finally, an effort has been made to map docking of marker protein-luteolin at a particular site using docking software. This review gives a holistic overview about luteolin as a therapeutic molecule for cancer/diabetes via acting on multiple signaling cascade such as p53, Wnt, eNOS, iNOS, SOD and MMP9, with especial emphasis on the cyclin-CDK pathway. Altogether, the review concludes that luteolin can be a molecule for the therapy of both cancer and diabetes by acting on broad signaling pathway.


Asunto(s)
Biomarcadores/metabolismo , Neoplasias del Colon/metabolismo , Diabetes Mellitus/metabolismo , Luteolina/metabolismo , Humanos , Transducción de Señal
16.
Mol Genet Genomic Med ; 6(3): 370-381, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29573570

RESUMEN

BACKGROUND: Karyotype determination has a central role in the genetic workup of pregnancy loss, as aneuploidy (trisomy and monosomy) and polyploidy (triploidy and tetraploidy) are the cause in at least 50% of first trimester, 25% of second trimester, and 11% of third trimester miscarriages. There are several limitations with the current approaches of obtaining a karyotype using traditional cytogenetics, fluorescence in situ hybridization with a limited number of probes, and chromosomal microarray. These include culture failure, incomplete results, lower sensitivity, and longer reporting time. METHODS: To overcome current limitations, a novel molecular assay is developed with a Standard Resolution Interphase Chromosome Profiling probe set which is a variation of the recently developed High Resolution probe set. It generates a molecular karyotype that can detect all major changes commonly associated with pregnancy loss. Initial familiarization of signal patterns from the probe set was used, followed by validation of the method using 83 samples from miscarriages in a blind study from three different laboratories. Finally, the clinical utility of the method was tested on 291 clinical samples in two commercial reference laboratory settings on two different continents. RESULTS: The new molecular approach not only identified all the chromosome changes observed by current methods, but also significantly improved abnormality detection by characterizing derivative chromosomes and finding subtle subtelomeric rearrangements, balanced and unbalanced. All Robertsonian translocations were also detected. The abnormality rate was 54% on clinical samples from commercial laboratory 1 and 63% from laboratory 2. CONCLUSION: The attributes of this method make it an ideal choice for the genetic workup of miscarriages, namely (1) near 100% successful results, (2) greater sensitivity than conventional chromosome analysis or FISH panels, (3) rapid reporting time, and (4) favorable comparisons with chromosomal microarray.


Asunto(s)
Análisis Citogenético/métodos , Citogenética/métodos , Aborto Espontáneo/genética , Aberraciones Cromosómicas , Femenino , Humanos , Hibridación Fluorescente in Situ/métodos , Interfase/genética , Cariotipo , Cariotipificación/métodos , Monosomía/diagnóstico , Embarazo , Diagnóstico Prenatal/métodos , Sensibilidad y Especificidad , Tetrasomía/diagnóstico , Trisomía/diagnóstico
17.
Nat Commun ; 8(1): 315, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28827522

RESUMEN

Bacteria have developed various mechanisms by which they sense, interact, and kill other bacteria, in an attempt to outcompete one another and survive. Here we show that Bacillus subtilis can kill and prey on Bacillus megaterium. We find that Bacillus subtilis rapidly inhibits Bacillus megaterium growth by delivering the tRNase toxin WapA. Furthermore, utilizing the methionine analogue L-azidohomoalanine as a nutrient reporter, we provide evidence of nutrient extraction from Bacillus megaterium by Bacillus subtilis. Toxin delivery and nutrient extraction occur in a contact-dependent manner, and both activities are abolished in the absence of the phosphodiestrase YmdB, shown previously to mediate intercellular nanotube formation. Furthermore, we detect the localization of WapA molecules to nanotubes. Thus, we propose that Bacillus subtilis utilizes the same nanotube apparatus in a bidirectional manner, delivering toxin and acquiring beneficial cargo, thereby maximally exploiting potential niche resources.Bacteria can exchange nutrients and macromolecules through tubular membranous structures called nanotubes. Here, the authors show that Bacillus subtilis can kill and prey on Bacillus megaterium by delivering a toxin and extracting nutrients in a nanotube-dependent manner.


Asunto(s)
Antibiosis/fisiología , Bacillus megaterium/fisiología , Bacillus subtilis/fisiología , Toxinas Bacterianas/metabolismo , Antígenos Bacterianos/metabolismo , Bacillus megaterium/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Nanotubos , Hidrolasas Diéster Fosfóricas/metabolismo
18.
Meta Gene ; 3: 8-13, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26925371

RESUMEN

In the present paper we report an extremely rare case of mosaicism of 45,X/47,XX,+13 in a 28-year-old women. The patient was referred for cytogenetic evaluation for secondary amenorrhoea. The patient was found to have some mild characteristic features of Turner syndrome such as wide carrying angle and short stature. Ultrasound examination revealed the presence of a small sized uterus and bilateral streak ovaries. G-banded chromosome analysis revealed a mosaic female karyotype involving two different cell lines. One cell line (72% of analysed metaphases) presented monosomy of X while the remaining 28% of cells showed trisomy of chromosome 13. Fluorescence in situ hybridization (FISH) with locus specific probe for trisomy 13 and CEP X for monosomy X substantiated the results obtained from karyotyping.

19.
PLoS One ; 8(8): e70776, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951006

RESUMEN

In view of the world wide prevalence of Helicobacter pylori infection, its potentially serious consequences, and the increasing emergence of antibiotic resistant H. pylori strains there is an urgent need for the development of alternative strategies to combat the infection. In this study it has been demonstrated that polyethyleneimine (PEI) functionalized zinc oxide (ZnO) nanoparticles (NPs) inhibit the growth of a metronidazole-resistant strain of H. pylori and the molecular basis of the anti-bacterial activity of ZnO-PEI NP has been investigated. The ZnO-PEI NP was synthesized using a wet chemical method with a core size of approximately 3-7 nm. Internalization and distribution of ZnO-PEI NP without agglomeration was observed in H. pylori cytosol by electron microscopy. Several lines of evidence including scanning electron microscopy, propidium iodide uptake and ATP assay indicate severe membrane damage in ZnO-PEI NP treated H. pylori. Intracellular ROS generation increased rapidly following the treatment of H. pylori with ZnO-PEI NP and extensive degradation of 16S and 23S rRNA was observed by quantitative reverse-transcriptase PCR. Finally, considerable synergy between ZnO-PEI NP and antibiotics was observed and it has been demonstrated that the concentration of ZnO-PEI NP (20 µg/ml) that is non-toxic to human cells could be used in combination with sub-inhibitory concentrations of antibiotics for the inhibition of H. pylori growth.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Metronidazol/farmacología , Nanopartículas/química , Polietileneimina/farmacología , Óxido de Zinc/farmacología , Farmacorresistencia Bacteriana , Helicobacter pylori/citología , Helicobacter pylori/crecimiento & desarrollo , Humanos , Polietileneimina/química , Óxido de Zinc/química
20.
Hum Exp Toxicol ; 30(7): 636-48, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20630917

RESUMEN

Environmental pollution is a complex issue because of the diversity of anthropogenic agents, both chemical and physical, that have been detected and catalogued. The consequences to biota from exposure to genotoxic agents present an additional problem because of the potential for these agents to produce adverse change at the cellular and organism levels. Past studies in virus have focused on structural damage to the DNA of environmental species that may occur after exposure to genotoxic agents and the use of this information to document exposure and to monitor remediation. In an effort to predict effects at the population, community and ecosystem levels, in the present study, we attempt to characterize damage occurring through genotoxic agents like 5-bromo-2-deoxyuridine, BrdU, using sister chromatid exchange technique and the formation of micronuclei (MN) in the peripheral lymphocytes of the post-polio syndrome sequelae affected by poliovirus. Analysis of structural chromosomal aberrations (CAs) and involvement of the specific chromosome break were pursued in this study. They revealed a significantly higher incidence of CAs (chromatid and chromosome breaks) in patients compared with controls, where the specific chromosome break has emerged as specific. Also, the maximum numbers of breaks were found to be in chromosome 1 at the position 1p36.1. The results also suggest a correlation between CAs and content of MN.


Asunto(s)
Linfocitos/patología , Micronúcleos con Defecto Cromosómico , Síndrome Pospoliomielitis/genética , Intercambio de Cromátides Hermanas , Adolescente , Adulto , Células Cultivadas , Cromátides , Rotura Cromosómica , Daño del ADN , Femenino , Humanos , Linfocitos/fisiología , Masculino , Pruebas de Micronúcleos/métodos , Persona de Mediana Edad , Síndrome Pospoliomielitis/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA