RESUMEN
Excessive production of potent biological oxidants such as HOCl has been implicated in numerous diseases. Thus, it is crucial to develop highly specific and precise methods to detect HOCl in living systems, preferably with molecules that can show a distinct therapeutic effect. Our study introduces the synthesis and application of a highly sensitive fluorescence "turn-on" probe, Myco-OCl, based on the mycophenolic acid scaffold with exceptional water solubility. The ESIPT-driven mechanism enables Myco-OCl to specifically and rapidly detect (<5 s) HOCl with an impressive Stokes shift of 105 nm (λex = 417 nm, λem = 522 nm) and a sub-nanomolar (97.3 nM) detection limit with the detection range of 0 to 50 µM. The potential of Myco-OCl as an excellent biosensor is evident from its successful application for live cell imaging of exogenous and endogenous HOCl. In addition, Myco-OCl enabled us to detect HOCl in a zebrafish inflammatory animal model. These underscore the great potential of Myco-OCl for detecting HOCl in diverse physiological systems. Our findings thus offer a highly promising tool for detecting HOCl in living organisms.
RESUMEN
Potent oxidants such as peroxynitrite (ONOO-) play important roles in the regulation of different physiopathological processes; their overproduction is thought to potentially cause several diseases in living organisms. Hence, the precise and selective monitoring of ONOO- is imperative for elucidating its interplay and roles in pathological and physiological processes. Herein, we present a novel diphenyl phosphinate-masked benzoindocyanin "turn-on" fluorogenic probe to help detect mitochondrial ONOO- in living cells and zebrafish models. A pale yellow color solution of BICBzDP turns rose-red upon the addition of ONOO-, selectively, contrary to that of other competitive bioactive molecules. BICBzDP displays an ultra-sensitivity detection limit (47.8 nM) with outstanding selectivity and sensitivity towards mitochondrial ONOO- and possesses a notable 68-fold fluorescence enhancement involving a large redshift of 91 nm. Importantly, further biological experimental investigations with BICBzDP indicate specific sensitivity and reliability of the probe to track the ONOO- level, not only in live cells, but also demonstrates dynamic fluctuations in the inflammatory zebrafish animal models. Thus, BICBzDP could be employed as a future potential biological tool for exploiting the role of ONOO- in a variety of different physiological systems.