Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 10261-10269, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34898430

RESUMEN

The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications. Hence, this article introduces a novel network, MobileSal, which focuses on efficient RGB-D SOD using mobile networks for deep feature extraction. However, mobile networks are less powerful in feature representation than cumbersome networks. To this end, we observe that the depth information of color images can strengthen the feature representation related to SOD if leveraged properly. Therefore, we propose an implicit depth restoration (IDR) technique to strengthen the mobile networks' feature representation capability for RGB-D SOD. IDR is only adopted in the training phase and is omitted during testing, so it is computationally free. Besides, we propose compact pyramid refinement (CPR) for efficient multi-level feature aggregation to derive salient objects with clear boundaries. With IDR and CPR incorporated, MobileSal performs favorably against state-of-the-art methods on six challenging RGB-D SOD datasets with much faster speed (450fps for the input size of 320×320) and fewer parameters (6.5M). The code is released at https://mmcheng.net/mobilesal.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
2.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 9802-9813, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34919516

RESUMEN

Single-View depth estimation using the CNNs trained from unlabelled videos has shown significant promise. However, excellent results have mostly been obtained in street-scene driving scenarios, and such methods often fail in other settings, particularly indoor videos taken by handheld devices. In this work, we establish that the complex ego-motions exhibited in handheld settings are a critical obstacle for learning depth. Our fundamental analysis suggests that the rotation behaves as noise during training, as opposed to the translation (baseline) which provides supervision signals. To address the challenge, we propose a data pre-processing method that rectifies training images by removing their relative rotations for effective learning. The significantly improved performance validates our motivation. Towards end-to-end learning without requiring pre-processing, we propose an Auto-Rectify Network with novel loss functions, which can automatically learn to rectify images during training. Consequently, our results outperform the previous unsupervised SOTA method by a large margin on the challenging NYUv2 dataset. We also demonstrate the generalization of our trained model in ScanNet and Make3D, and the universality of our proposed learning method on 7-Scenes and KITTI datasets.


Asunto(s)
Algoritmos
3.
IEEE Trans Image Process ; 30: 3804-3814, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33735077

RESUMEN

Recent progress on salient object detection (SOD) mostly benefits from the explosive development of Convolutional Neural Networks (CNNs). However, much of the improvement comes with the larger network size and heavier computation overhead, which, in our view, is not mobile-friendly and thus difficult to deploy in practice. To promote more practical SOD systems, we introduce a novel Stereoscopically Attentive Multi-scale (SAM) module, which adopts a stereoscopic attention mechanism to adaptively fuse the features of various scales. Embarking on this module, we propose an extremely lightweight network, namely SAMNet, for SOD. Extensive experiments on popular benchmarks demonstrate that the proposed SAMNet yields comparable accuracy with state-of-the-art methods while running at a GPU speed of 343fps and a CPU speed of 5fps for 336 ×336 inputs with only 1.33M parameters. Therefore, SAMNet paves a new path towards SOD. The source code is available on the project page https://mmcheng.net/SAMNet/.

4.
IEEE Trans Pattern Anal Mach Intell ; 43(3): 982-998, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31562072

RESUMEN

Nonlinear regression has been extensively employed in many computer vision problems (e.g., crowd counting, age estimation, affective computing). Under the umbrella of deep learning, two common solutions exist i) transforming nonlinear regression to a robust loss function which is jointly optimizable with the deep convolutional network, and ii) utilizing ensemble of deep networks. Although some improved performance is achieved, the former may be lacking due to the intrinsic limitation of choosing a single hypothesis and the latter may suffer from much larger computational complexity. To cope with those issues, we propose to regress via an efficient "divide and conquer" manner. The core of our approach is the generalization of negative correlation learning that has been shown, both theoretically and empirically, to work well for non-deep regression problems. Without extra parameters, the proposed method controls the bias-variance-covariance trade-off systematically and usually yields a deep regression ensemble where each base model is both "accurate" and "diversified." Moreover, we show that each sub-problem in the proposed method has less Rademacher Complexity and thus is easier to optimize. Extensive experiments on several diverse and challenging tasks including crowd counting, personality analysis, age estimation, and image super-resolution demonstrate the superiority over challenging baselines as well as the versatility of the proposed method. The source code and trained models are available on our project page: https://mmcheng.net/dncl/.

5.
IEEE Trans Pattern Anal Mach Intell ; 43(4): 1460-1466, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32142419

RESUMEN

Is recurrent network really necessary for learning a good visual representation for video based person re-identification (VPRe-id)? In this paper, we first show that the common practice of employing recurrent neural networks (RNNs) to aggregate temporal-spatial features may not be optimal. Specifically, with a diagnostic analysis, we show that the recurrent structure may not be effective learn temporal dependencies than what we expected and implicitly yields an orderless representation. Based on this observation, we then present a simple yet surprisingly powerful approach for VPRe-id, where we treat VPRe-id as an efficient orderless ensemble of image based person re-identification problem. More specifically, we divide videos into individual images and re-identify person with ensemble of image based rankers. Under the i.i.d. assumption, we provide an error bound that sheds light upon how could we improve VPRe-id. Our work also presents a promising way to bridge the gap between video and image based person re-identification. Comprehensive experimental evaluations demonstrate that the proposed solution achieves state-of-the-art performances on multiple widely used datasets (iLIDS-VID, PRID 2011, and MARS).

6.
IEEE Trans Pattern Anal Mach Intell ; 41(8): 1939-1946, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30387723

RESUMEN

Edge detection is a fundamental problem in computer vision. Recently, convolutional neural networks (CNNs) have pushed forward this field significantly. Existing methods which adopt specific layers of deep CNNs may fail to capture complex data structures caused by variations of scales and aspect ratios. In this paper, we propose an accurate edge detector using richer convolutional features (RCF). RCF encapsulates all convolutional features into more discriminative representation, which makes good usage of rich feature hierarchies, and is amenable to training via backpropagation. RCF fully exploits multiscale and multilevel information of objects to perform the image-to-image prediction holistically. Using VGG16 network, we achieve state-of-the-art performance on several available datasets. When evaluating on the well-known BSDS500 benchmark, we achieve ODS F-measure of 0.811 while retaining a fast speed (8 FPS). Besides, our fast version of RCF achieves ODS F-measure of 0.806 with 30 FPS. We also demonstrate the versatility of the proposed method by applying RCF edges for classical image segmentation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA