Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 179(7): 1455-1467, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835027

RESUMEN

Understanding the genetic and molecular drivers of phenotypic heterogeneity across individuals is central to biology. As new technologies enable fine-grained and spatially resolved molecular profiling, we need new computational approaches to integrate data from the same organ across different individuals into a consistent reference and to construct maps of molecular and cellular organization at histological and anatomical scales. Here, we review previous efforts and discuss challenges involved in establishing such a common coordinate framework, the underlying map of tissues and organs. We focus on strategies to handle anatomical variation across individuals and highlight the need for new technologies and analytical methods spanning multiple hierarchical scales of spatial resolution.


Asunto(s)
Variación Anatómica , Diagnóstico por Imagen/normas , Examen Físico/normas , Diagnóstico por Imagen/métodos , Humanos , Examen Físico/métodos , Estándares de Referencia
2.
Genome Res ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39322281

RESUMEN

Cis-regulatory elements (CREs), such as promoters and enhancers, are DNA sequences that regulate the expression of genes. The activity of a CRE is influenced by the order, composition, and spacing of sequence motifs that are bound by proteins called transcription factors (TFs). Synthetic CREs with specific properties are needed for biomanufacturing as well as for many therapeutic applications including cell and gene therapy. Here, we present regLM, a framework to design synthetic CREs with desired properties, such as high, low, or cell type-specific activity, using autoregressive language models in conjunction with supervised sequence-to-function models. We used our framework to design synthetic yeast promoters and cell type-specific human enhancers. We demonstrate that the synthetic CREs generated by our approach are not only predicted to have the desired functionality but also contain biological features similar to experimentally validated CREs. regLM thus facilitates the design of realistic regulatory DNA elements while providing insights into the cis-regulatory code.

3.
Nature ; 595(7868): 554-559, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163074

RESUMEN

The mammalian cerebral cortex has an unparalleled diversity of cell types, which are generated during development through a series of temporally orchestrated events that are under tight evolutionary constraint and are critical for proper cortical assembly and function1,2. However, the molecular logic that governs the establishment and organization of cortical cell types remains unknown, largely due to the large number of cell classes that undergo dynamic cell-state transitions over extended developmental timelines. Here we generate a comprehensive atlas of the developing mouse neocortex, using single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin using sequencing. We sampled the neocortex every day throughout embryonic corticogenesis and at early postnatal ages, and complemented the sequencing data with a spatial transcriptomics time course. We computationally reconstruct developmental trajectories across the diversity of cortical cell classes, and infer their spatial organization and the gene regulatory programs that accompany their lineage bifurcation decisions and differentiation trajectories. Finally, we demonstrate how this developmental map pinpoints the origin of lineage-specific developmental abnormalities that are linked to aberrant corticogenesis in mutant mice. The data provide a global picture of the regulatory mechanisms that govern cellular diversification in the neocortex.


Asunto(s)
Neocórtex/citología , Neurogénesis , Animales , Diferenciación Celular , Proteínas de Unión al ADN/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neocórtex/embriología , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma
4.
Nature ; 598(7879): 103-110, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616066

RESUMEN

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.


Asunto(s)
Epigenómica , Perfilación de la Expresión Génica , Corteza Motora/citología , Neuronas/clasificación , Análisis de la Célula Individual , Transcriptoma , Animales , Atlas como Asunto , Conjuntos de Datos como Asunto , Epigénesis Genética , Femenino , Masculino , Ratones , Corteza Motora/anatomía & histología , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Reproducibilidad de los Resultados
5.
PLoS Comput Biol ; 20(10): e1012463, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352888

RESUMEN

The continued scaling of genetic perturbation technologies combined with high-dimensional assays such as cellular microscopy and RNA-sequencing has enabled genome-scale reverse-genetics experiments that go beyond single-endpoint measurements of growth or lethality. Datasets emerging from these experiments can be combined to construct perturbative "maps of biology", in which readouts from various manipulations (e.g., CRISPR-Cas9 knockout, CRISPRi knockdown, compound treatment) are placed in unified, relatable embedding spaces allowing for the generation of genome-scale sets of pairwise comparisons. These maps of biology capture known biological relationships and uncover new associations which can be used for downstream discovery tasks. Construction of these maps involves many technical choices in both experimental and computational protocols, motivating the design of benchmark procedures to evaluate map quality in a systematic, unbiased manner. Here, we (1) establish a standardized terminology for the steps involved in perturbative map building, (2) introduce key classes of benchmarks to assess the quality of such maps, (3) construct 18 maps from four genome-scale datasets employing different cell types, perturbation technologies, and data readout modalities, (4) generate benchmark metrics for the constructed maps and investigate the reasons for performance variations, and (5) demonstrate utility of these maps to discover new biology by suggesting roles for two largely uncharacterized genes.

6.
Nat Methods ; 18(11): 1352-1362, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34711971

RESUMEN

Charting an organs' biological atlas requires us to spatially resolve the entire single-cell transcriptome, and to relate such cellular features to the anatomical scale. Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) can profile cells comprehensively, but lose spatial information. Spatial transcriptomics allows for spatial measurements, but at lower resolution and with limited sensitivity. Targeted in situ technologies solve both issues, but are limited in gene throughput. To overcome these limitations we present Tangram, a method that aligns sc/snRNA-seq data to various forms of spatial data collected from the same region, including MERFISH, STARmap, smFISH, Spatial Transcriptomics (Visium) and histological images. Tangram can map any type of sc/snRNA-seq data, including multimodal data such as those from SHARE-seq, which we used to reveal spatial patterns of chromatin accessibility. We demonstrate Tangram on healthy mouse brain tissue, by reconstructing a genome-wide anatomically integrated spatial map at single-cell resolution of the visual and somatomotor areas.


Asunto(s)
Encéfalo/metabolismo , Cromatina/genética , Aprendizaje Profundo , Regulación de la Expresión Génica , Análisis de la Célula Individual/métodos , Programas Informáticos , Transcriptoma , Animales , Cromatina/química , Cromatina/metabolismo , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , RNA-Seq , Secuencias Reguladoras de Ácidos Nucleicos
8.
Mol Syst Biol ; 15(6): e8707, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186282

RESUMEN

Quantifying virulence remains a central problem in human health, pest control, disease ecology, and evolutionary biology. Bacterial virulence is typically quantified by the LT50 (i.e., the time taken to kill 50% of infected hosts); however, such an indicator cannot account for the full complexity of the infection process, such as distinguishing between the pathogen's ability to colonize versus kill the hosts. Indeed, the pathogen needs to breach the primary defenses in order to colonize, find a suitable environment to replicate, and finally express the virulence factors that cause disease. Here, we show that two virulence attributes, namely pathogen lethality and invasiveness, can be disentangled from the survival curves of a laboratory population of Caenorhabditis elegans nematodes exposed to three bacterial pathogens: Pseudomonas aeruginosa, Serratia marcescens, and Salmonella enterica We first show that the host population eventually experiences a constant mortality rate, which quantifies the lethality of the pathogen. We then show that the time necessary to reach this constant mortality rate regime depends on the pathogen growth rate and colonization rate, and thus determines the pathogen invasiveness. Our framework reveals that Serratia marcescens is particularly good at the initial colonization of the host, whereas Salmonella enterica is a poor colonizer yet just as lethal once established. Pseudomonas aeruginosa, on the other hand, is both a good colonizer and highly lethal after becoming established. The ability to quantitatively characterize the ability of different pathogens to perform each of these steps has implications for treatment and prevention of disease and for the evolution and ecology of pathogens.


Asunto(s)
Bacterias/patogenicidad , Infecciones Bacterianas/mortalidad , Caenorhabditis elegans/microbiología , Animales , Infecciones Bacterianas/veterinaria , Interacciones Huésped-Patógeno , Mortalidad , Pseudomonas aeruginosa/patogenicidad , Salmonella enterica/patogenicidad , Serratia marcescens/patogenicidad , Virulencia
9.
PLoS Biol ; 15(6): e1002606, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28591227

RESUMEN

[This corrects the article DOI: 10.1371/journal.pbio.1002540.].

10.
PLoS Biol ; 14(8): e1002540, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27557335

RESUMEN

Mutualisms between species play an important role in ecosystem function and stability. However, in some environments, the competitive aspects of an interaction may dominate the mutualistic aspects. Although these transitions could have far-reaching implications, it has been difficult to study the causes and consequences of this mutualistic-competitive transition in experimentally tractable systems. Here, we study a microbial cross-feeding mutualism in which each yeast strain supplies an essential amino acid for its partner strain. We find that, depending upon the amount of freely available amino acid in the environment, this pair of strains can exhibit an obligatory mutualism, facultative mutualism, competition, parasitism, competitive exclusion, or failed mutualism leading to extinction of the population. A simple model capturing the essential features of this interaction explains how resource availability modulates the interaction and predicts that changes in the dynamics of the mutualism in deteriorating environments can provide advance warning that collapse of the mutualism is imminent. We confirm this prediction experimentally by showing that, in the high nutrient competitive regime, the strains rapidly reach a common carrying capacity before slowly reaching the equilibrium ratio between the strains. However, in the low nutrient regime, before collapse of the obligate mutualism, we find that the ratio rapidly reaches its equilibrium and it is the total abundance that is slow to reach equilibrium. Our results provide a general framework for how mutualisms may transition between qualitatively different regimes of interaction in response to changes in nutrient availability in the environment.


Asunto(s)
Leucina/metabolismo , Saccharomyces cerevisiae/metabolismo , Simbiosis , Triptófano/metabolismo , Algoritmos , División Celular/efectos de los fármacos , División Celular/genética , Medios de Cultivo/metabolismo , Medios de Cultivo/farmacología , Ecosistema , Citometría de Flujo , Leucina/genética , Ingeniería Metabólica/métodos , Modelos Biológicos , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/genética , Especificidad de la Especie , Espectrofotometría , Factores de Tiempo , Triptófano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA