Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Med Virol ; 94(6): 2479-2486, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35174519

RESUMEN

The COVID-19 pandemic continues to have a threatening impact on a global scale, largely due to the emergence of newly SARS-CoV-2 variants. The Mu (PANGO lineage B.1.621), was first identified in Colombia in January 2021 and was classified as a variant of interest (VOI) in August 2021, due to a constellation of mutations that likely-mediate an unexpectedly enhanced immune resistance to inactivated vaccine-elicited antibodies. Despite recent studies suggesting that the Mu variant appears to have less infectivity than the Delta variant, here we examined the structural effect of the Mu spike protein mutations and predicted the potential impact on infectivity of the Mu variant compared with the Delta and Delta plus spike protein.


Asunto(s)
COVID-19 , SARS-CoV-2 , Atención , Vacunas contra la COVID-19 , Humanos , Mutación , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
2.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456974

RESUMEN

Tracing the appearance and evolution of virus variants is essential in the management of the COVID-19 pandemic. Here, we focus on SARS-CoV-2 spread in Italian patients by using viral sequences deposited in public databases and a tracing procedure which is used to monitor the evolution of the pandemic and detect the spreading, within the infected population of emergent sub-clades with a potential positive selection. Analyses of a collection of monthly samples focused on Italy highlighted the appearance and evolution of all the main viral sub-trees emerging at the end of the first year of the pandemic. It also identified additional expanding subpopulations which spread during the second year (i.e., 2021). Three-dimensional (3D) modelling of the main amino acid changes in mutated viral proteins, including ORF1ab (nsp3, nsp4, 2'-o-ribose methyltransferase, nsp6, helicase, nsp12 [RdRp]), N, ORF3a, ORF8, and spike proteins, shows the potential of the analysed structural variations to result in epistatic modulation and positive/negative selection pressure. These analyzes will be of importance to the early identification of emerging clades, which can develop into new "variants of concern" (i.e., VOC). These analyses and settings will also help SARS-CoV-2 coronet genomic centers in other countries to trace emerging worldwide variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Mutación , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
J Med Virol ; 93(12): 6551-6556, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34260088

RESUMEN

Lineage B.1.617+, also known as G/452R.V3 and now denoted by WHO with the Greek letters δ and κ, is a recently described SARS-CoV-2 variant under investigation first identified in October 2020 in India. As of May 2021, three sublineages labeled as B.1.617.1 (κ), B.1.617.2 (δ), and B.1.617.3 have been already identified, and their potential impact on the current pandemic is being studied. This variant has 13 amino acid changes, three in its spike protein, which are currently of particular concern: E484Q, L452R, and P681R. Here, we report a major effect of the mutations characterizing this lineage, represented by a marked alteration of the surface electrostatic potential (EP) of the receptor-binding domain (RBD) of the spike protein. Enhanced RBD-EP is particularly noticeable in the B.1.617.2 (δ) sublineage, which shows multiple replacements of neutral or negatively charged amino acids with positively charged amino acids. We here hypothesize that this EP change can favor the interaction between the B.1.617+ RBD and the negatively charged ACE2, thus conferring a potential increase in the virus transmission.


Asunto(s)
COVID-19/virología , SARS-CoV-2/patogenicidad , COVID-19/transmisión , Humanos , Mutación , Estructura Terciaria de Proteína , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Electricidad Estática
4.
J Med Virol ; 92(6): 584-588, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32083328

RESUMEN

Last December 2019, a new virus, named novel Coronavirus (COVID-2019) causing many cases of severe pneumonia was reported in Wuhan, China. The virus knowledge is limited and especially about COVID-2019 pathogenesis. The Open Reading Frame 1ab (ORF1ab) of COVID-2019 has been analyzed to evidence the presence of mutation caused by selective pressure on the virus. For selective pressure analysis fast-unconstrained Bayesian approximation (FUBAR) was used. Homology modelling has been performed by SwissModel and HHPred servers. The presence of transmembrane helical segments in Coronavirus ORF1ab non structural protein 2 (nsp2) and nsp3 was tested by TMHMM, MEMSAT, and MEMPACK tools. Three-dimensional structures have been analyzed and displayed using PyMOL. FUBAR analysis revealed the presence of potential sites under positive selective pressure (P < .05). Position 723 in the COVID-2019 has a serine instead a glycine residue, while at aminoacidic position 1010 a proline instead an isoleucine. Significant (P < .05) pervasive negative selection in 2416 sites (55%) was found. The positive selective pressure could account for some clinical features of this virus compared with severe acute respiratory syndrome (SARS) and Bat SARS-like CoV. The stabilizing mutation falling in the endosome-associated-protein-like domain of the nsp2 protein could account for COVID-2019 high ability of contagious, while the destabilizing mutation in nsp3 proteins could suggest a potential mechanism differentiating COVID-2019 from SARS. These data could be helpful for further investigation aimed to identify potential therapeutic targets or vaccine strategy, especially in the actual moment when the epidemic is ongoing and the scientific community is trying to enrich knowledge about this new viral pathogen.


Asunto(s)
Betacoronavirus/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Proteínas no Estructurales Virales/química , Proteínas Virales/química , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/virología , Femenino , Expresión Génica , Humanos , Masculino , Modelos Moleculares , Mutación , Pandemias , Neumonía Viral/virología , Poliproteínas , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , SARS-CoV-2 , Selección Genética , Homología Estructural de Proteína , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
J Med Virol ; 92(10): 2232-2237, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32492183

RESUMEN

Italy is the first western country suffering heavy severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and disease impact after coronavirus disease-2019 pandemia started in China. Even though the presence of mutations on spike glycoprotein and nucleocapsid in Italian isolates has been reported, the potential impact of these mutations on viral transmission has not been evaluated. We have compared SARS-CoV-2 genome sequences from Italian patients with virus sequences from Chinese patients. We focussed upon three nonsynonymous mutations of genes coding for S(one) and N (two) viral proteins present in Italian isolates and absent in Chinese ones, using various bioinformatics tools. Amino acid analysis and changes in three-dimensional protein structure suggests the mutations reduce protein stability and, particularly for S1 mutation, the enhanced torsional ability of the molecule could favor virus binding to cell receptor(s). This theoretical interpretation awaits experimental and clinical confirmation.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Proteínas de la Nucleocápside de Coronavirus/química , Genoma Viral , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Sustitución de Aminoácidos , COVID-19/patología , COVID-19/virología , China/epidemiología , Proteínas de la Nucleocápside de Coronavirus/genética , Evolución Molecular , Humanos , Italia/epidemiología , Modelos Moleculares , Epidemiología Molecular , Mutación , Fosfoproteínas/química , Fosfoproteínas/genética , Filogenia , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , SARS-CoV-2/clasificación , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/genética , Viaje , Replicación Viral
6.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121182

RESUMEN

Merkel cell polyomavirus (MCPyV) viral protein 1 (VP1) is the capsid protein that mediates virus attachment to host cell receptors and is the major immune target. Given the limited data on MCPyV VP1 mutations, the VP1 genetic variability was examined in 100 plasma and 100 urine samples from 100 HIV+ individuals. Sequencing of VP1 DNA in 17 urine and 17 plasma specimens, simultaneously MCPyV DNA positive, revealed that 27 samples displayed sequences identical to VP1 of MCC350 strain. VP1 from two urine specimens had either Thr47Ser or Ile115Phe substitution, whereas VP1 of one plasma contained Asp69Val and Ser251Phe substitutions plus deletion (∆) of Tyr79. VP1 DNA in the remaining samples had mutations encoding truncated protein. Three-dimensional prediction models revealed that Asp69Val, Ser251Phe, and Ile115Phe caused neutral effects while Thr47Ser and Tyr79∆ produced a deleterious effect reducing VP1 stability. A549 cells infected with urine or plasma samples containing full-length VP1 variants with substitutions, sustained viral DNA replication and VP1 expression. Moreover, medium harvested from these cells was able to infect new A549 cells. In cells infected by samples with truncated VP1, MCPyV replication was hampered. In conclusion, MCPyV strains with unique mutations in the VP1 gene are circulating in HIV+ patients. These strains display altered replication efficiency compared to the MCC350 prototype strain in A549 cells.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de la Cápside/química , Infecciones por VIH/virología , Poliomavirus de Células de Merkel/fisiología , Infecciones por Polyomavirus/virología , Células A549 , Adulto , Anciano , Proteínas de la Cápside/genética , Estudios Transversales , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/orina , VIH-1/patogenicidad , Humanos , Masculino , Poliomavirus de Células de Merkel/genética , Persona de Mediana Edad , Modelos Moleculares , Plasma/virología , Infecciones por Polyomavirus/sangre , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/orina , Conformación Proteica , Estabilidad Proteica , Orina/virología , Replicación Viral , Adulto Joven
7.
Chemotherapy ; 64(5-6): 215-223, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32259829

RESUMEN

BACKGROUND: In late December 2019, Chinese health authorities reported an outbreak of pneumonia of unknown origin in Wuhan, Hubei Province. SUMMARY: A few days later, the genome of a novel coronavirus was released (http://viro-logical.org/t/novel-2019-coronavirus-genome/319; Wuhan-Hu-1, GenBank accession No. MN908947) and made publicly available to the scientific community. This novel coronavirus was provisionally named 2019-nCoV, now SARS-CoV-2 according to the Coronavirus Study Group of the International Committee on Taxonomy of Viruses. SARS-CoV-2 belongs to the Coronaviridae family, Betacoronavirus genus, subgenus Sarbecovirus. Since its discovery, the virus has spread globally, causing thousands of deaths and having an enormous impact on our health systems and economies. In this review, we summarize the current knowledge about the epidemiology, phylogenesis, homology modeling, and molecular diagnostics of SARS-CoV-2. Key Messages: Phylogenetic analysis is essential to understand viral evolution, whereas homology modeling is important for vaccine strategies and therapies. Highly sensitive and specific diagnostic assays are key to case identification, contact tracing, identification of the animal source, and implementation of control measures.

10.
ACS Infect Dis ; 10(1): 127-137, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38104323

RESUMEN

The antibiotic fosfomycin (FOS) is widely recognized for the treatment of lower urinary tract infections with Escherichia coli and has lately gained importance as a therapeutic option to combat multidrug-resistant bacteria. However, resistance to FOS frequently develops through mutations reducing its uptake. Although the inner-membrane transport of FOS has been extensively studied in E. coli, its outer-membrane (OM) transport remains insufficiently understood. While evaluating minimal inhibitory concentrations in OM porin-deficient mutants, we observed that the E. coli ΔompFΔompC strain is four times more resistant to FOS than the wild type and the respective single mutants. Continuous monitoring of FOS-induced lysis of porin-deficient strains additionally highlighted the importance of LamB. The relevance of OmpF, OmpC, and LamB to FOS uptake was confirmed by electrophysiological and transcriptional analysis. Our study gives for the first time in-depth insight into the transport of FOS through the OM in E. coli.


Asunto(s)
Proteínas de Escherichia coli , Fosfomicina , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfomicina/farmacología , Transporte Biológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Porinas/genética , Porinas/metabolismo
11.
Front Public Health ; 12: 1335894, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947346

RESUMEN

Background: Cardiovascular diseases (CVDs) pose a significant global health challenge, necessitating innovative approaches for primary prevention. Personalized prevention, based on genetic risk scores (PRS) and digital technologies, holds promise in revolutionizing CVD preventive strategies. However, the clinical efficacy of these interventions requires further investigation. This study presents the protocol of the INNOPREV randomized controlled trial, aiming to evaluate the clinical efficacy of PRS and digital technologies in personalized cardiovascular disease prevention. Methods: The INNOPREV trial is a four-arm RCT conducted in Italy. A total of 1,020 participants, aged 40-69 with high 10-year CVD risk based on SCORE 2 charts, will be randomly assigned to traditional CVD risk assessment, genetic testing (CVD PRS), digital intervention (app and smart band), or a combination of genetic testing and digital intervention. The primary objective is to evaluate the efficacy of providing CVD PRS information, measured at baseline, either alone or in combination with the use of an app and a smart band, on two endpoints: changes in lifestyle patterns, and modification in CVD risk profiles. Participants will undergo a comprehensive assessment and cardiovascular evaluation at baseline, with follow-up visits at one, five, and 12 months. Lifestyle changes and CVD risk profiles will be assessed at different time points beyond the initial assessment, using the Life's Essential 8 and SCORE 2, respectively. Blood samples will be collected at baseline and at study completion to evaluate changes in lipid profiles. The analysis will employ adjusted mixed-effect models for repeated measures to assess significant differences in the data collected over time. Additionally, potential moderators and mediators will be examined to understand the underlying mechanisms of behavior change. Discussion: As the largest trial in this context, the INNOPREV trial will contribute to the advancement of personalized cardiovascular disease prevention, with the potential to positively impact public health and reduce the burden of CVDs on healthcare systems. By systematically examining the clinical efficacy of PRS and digital interventions, this trial aims to provide valuable evidence to guide future preventive strategies and enhance population health outcomes.


Asunto(s)
Enfermedades Cardiovasculares , Tecnología Digital , Humanos , Enfermedades Cardiovasculares/prevención & control , Persona de Mediana Edad , Adulto , Anciano , Femenino , Masculino , Medición de Riesgo/métodos , Italia , Medicina de Precisión , Pruebas Genéticas , Prevención Primaria , Puntuación de Riesgo Genético
12.
Pathogens ; 11(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35890058

RESUMEN

An analysis of the structural effect of the mutations of the B.1.640.2 (IHU) Spike Receptor Binding Domain (RBD) and N-terminal Domain (NTD) is reported along with a comparison with the sister lineage B.1.640.1. and a selection of variants of concern. The effect of the mutations on the RBD-ACE2 interaction was also assessed. The structural analysis applied computational methods that are able to carry out in silico mutagenesis to calculate energy minimization and the folding energy variation consequent to residue mutations. Tools for electrostatic calculation were applied to quantify and display the protein surface electrostatic potential. Interactions at the RBD-ACE2 interface were scrutinized using computational tools that identify the interactions and predict the contribution of each interface residue to the stability of the complex. The comparison among the RBDs shows that the most evident differences between the variants is in the distribution of the surface electrostatic potential: that of B.1.640.1 is as that of the Alpha RBD, while B.1.640.2 appears to have an intermediate surface potential pattern with characteristics between those of the Alpha and Delta variants. Moreover, the B.1.640.2 Spike includes the mutation E484K that in other variants has been suggested to be involved in immune evasion. These properties may hint at the possibility that B.1.640.2 emerged with a potentially increased infectivity with respect to the sister B.1.640.1 variant, but significantly lower than that of the Delta and Omicron variants. However, the analysis of their NTD domains highlights deletions, destabilizing mutations and charge alterations that can limit the ability of the B.1.640.1 and B.1.640.2 variants to interact with cellular components, such as cell surface receptors.

13.
Mol Nutr Food Res ; 66(3): e2100405, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34821456

RESUMEN

SCOPE: Wild strawberries (Fragaria vesca) are richer in (poly)phenols than common commercial strawberry varieties, e.g., Fragaria × ananassa. (Poly)phenols and their microbiota-derived metabolites are hypothesized to exert bioactivity within the human gut mucosa. To address this, the effects of wild strawberries are investigated with respect to their bioactivity and microbiota-modulating capacity using both in vitro and ex vivo approaches. METHODS AND RESULTS: Ileal fluids collected pre- (0h) and post-consumption (8h) of 225 g wild strawberries by ileostomates (n = 5) and also in vitro digested strawberry varieties (Fragaria vesca and Fragaria × ananassa Duchesne) supernatants are collected. Subsequent fermentation of these supernatants using an in vitro batch culture proximal colon model reveals significant treatment-specific changes in microbiome community structure in terms of alpha but not beta diversity at 24 h. Nutri-kinetic analysis reveals a significant increase in the concentration of gut microbiota catabolites, including 3-(4hydroxyphenyl)propionic acid, 3-(3-hydroxyphenyl)propanoic acid, and benzoic acid. Furthermore, post-berry ileal fermentates (24 h) significantly (p < 0.01) decrease DNA damage (% Tail DNA, COMET assay) in both HT29 cells (∼45%) and CCD 841 CoN cells (∼25%) compared to untreated controls. CONCLUSIONS: Post berry consumption fermentates exhibit increased overall levels of (poly)phenolic metabolites, which retains their bioactivity, reducing DNA damage in colonocytes.


Asunto(s)
Fragaria , Microbioma Gastrointestinal , Colon/metabolismo , Daño del ADN , Células Epiteliales , Fermentación , Fragaria/química , Frutas/química , Humanos , Cinética
14.
Int J Biol Macromol ; 170: 820-826, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33359807

RESUMEN

In this study, analysis of changes of SARS-CoV-2 ORF3a protein during pandemic is reported. ORF3a, a conserved coronavirus protein, is involved in virus replication and release. A set of 70,752 high-quality SARS-CoV-2 genomes available in GISAID databank at the end of August 2020 have been scanned. All ORF3a mutations in the virus genomes were grouped according to the collection date interval and over the entire data set. The considered intervals were: start of collection-February, March, April, May, June, July and August 2020. The top five most frequent variants were examined within each collection interval. Overall, seventeen variants have been isolated. Ten of the seventeen mutant sites occur within the transmembrane (TM) domain of ORF3a and are in contact with the central pore or side tunnels. The other variant sites are in different places of the ORF3a structure. Within the entire sample, the five most frequent mutations are V13L, Q57H, Q57H + A99V, G196V and G252V. The same analysis identified 28 sites identically conserved in all the genome isolates. These sites are possibly involved in stabilization of monomer, dimer, tetramerization and interaction with other cellular components. The results here reported can be helpful to understand virus biology and to design new therapeutic strategies.


Asunto(s)
COVID-19/virología , Mutación , SARS-CoV-2/genética , Proteínas Viroporinas/genética , Secuencia de Aminoácidos , COVID-19/epidemiología , Secuencia Conservada , Bases de Datos Genéticas , Evolución Molecular , Genoma Viral , Humanos , Modelos Moleculares , Pandemias , Estructura Cuaternaria de Proteína , Proteoma/genética , SARS-CoV-2/química , SARS-CoV-2/fisiología , Factores de Tiempo , Proteínas Viroporinas/química , Proteínas Viroporinas/fisiología
15.
Biomolecules ; 11(10)2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34680128

RESUMEN

Among the more recently identified SARS-CoV-2 Variants of Interest (VOI) is the Lambda variant, which emerged in Peru and has rapidly spread to South American regions and the US. This variant remains poorly investigated, particularly regarding the effects of mutations on the thermodynamic parameters affecting the stability of the Spike protein and its Receptor Binding Domain. We report here an in silico study on the potential impact of the Spike protein mutations on the immuno-escape ability of the Lambda variant. Bioinformatics analysis suggests that a combination of shortening the immunogenic epitope loops and the generation of potential N-glycosylation sites may be a viable adaptation strategy, potentially allowing this emerging viral variant to escape from host immunity.


Asunto(s)
Epítopos/genética , SARS-CoV-2/genética , Epítopos/inmunología , Humanos , SARS-CoV-2/inmunología
16.
Expert Rev Mol Diagn ; 21(6): 547-562, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33849359

RESUMEN

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has pushed the scientific community to undertake intense research efforts. Understanding SARS-CoV-2 biology is necessary to discover therapeutic or preventive strategies capable of containing the pandemic. Knowledge of the structural characteristics of the virus genome and proteins is essential to find targets for therapies and immunological interventions.Areas covered: This review covers different areas of expertise, genomic analysis of circulating strains, structural biology, viral mutations, molecular diagnostics, disease, and vaccines. In particular, the review is focused on the molecular approaches and modern clinical strategies used in these fields.Expert opinion: Molecular approaches to SARS-CoV-2 pandemic have been critical to shorten time for new diagnostic, therapeutic and prevention strategies. In this perspective, the entire scientific community is moving in the same direction. Vaccines, together with the development of new drugs to treat the disease, represent the most important strategy to protect human from viral disease and prevent further spread. In this regard, new molecular technologies have been successfully implemented. The use of a novel strategy of communication is suggested for a better diffusion to the broader public of new data and results.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , Vacunas contra la COVID-19/farmacología , COVID-19/epidemiología , SARS-CoV-2/genética , Animales , COVID-19/etiología , Genoma Viral , Humanos , Mutación , Filogenia , SARS-CoV-2/aislamiento & purificación , Proteínas Virales/química , Proteínas Virales/genética
17.
Sci Signal ; 14(690)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230209

RESUMEN

Inorganic polyphosphates (polyPs) are linear polymers composed of repeated phosphate (PO4 3-) units linked together by multiple high-energy phosphoanhydride bonds. In addition to being a source of energy, polyPs have cytoprotective and antiviral activities. Here, we investigated the antiviral activities of long-chain polyPs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In molecular docking analyses, polyPs interacted with several conserved amino acid residues in angiotensin-converting enzyme 2 (ACE2), the host receptor that facilitates virus entry, and in viral RNA-dependent RNA polymerase (RdRp). ELISA and limited proteolysis assays using nano- LC-MS/MS mapped polyP120 binding to ACE2, and site-directed mutagenesis confirmed interactions between ACE2 and SARS-CoV-2 RdRp and identified the specific amino acid residues involved. PolyP120 enhanced the proteasomal degradation of both ACE2 and RdRp, thus impairing replication of the British B.1.1.7 SARS-CoV-2 variant. We thus tested polyPs for functional interactions with the virus in SARS-CoV-2-infected Vero E6 and Caco2 cells and in primary human nasal epithelial cells. Delivery of a nebulized form of polyP120 reduced the amounts of viral positive-sense genomic and subgenomic RNAs, of RNA transcripts encoding proinflammatory cytokines, and of viral structural proteins, thereby presenting SARS-CoV-2 infection in cells in vitro.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Polifosfatos/farmacología , SARS-CoV-2/efectos de los fármacos , Administración por Inhalación , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Antivirales/administración & dosificación , Antivirales/química , COVID-19/metabolismo , COVID-19/virología , Células CACO-2 , Chlorocebus aethiops , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Citocinas/metabolismo , Células HEK293 , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Técnicas In Vitro , Modelos Biológicos , Simulación del Acoplamiento Molecular , Nebulizadores y Vaporizadores , Polifosfatos/administración & dosificación , Polifosfatos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteolisis/efectos de los fármacos , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Homología de Secuencia de Aminoácido , Transducción de Señal/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos
18.
Biomed Res Int ; 2020: 4389089, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32596311

RESUMEN

The Coronavirus Disease 2019 (COVID-19) is a new viral infection caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2). Genomic analyses have revealed that SARS-CoV-2 is related to Pangolin and Bat coronaviruses. In this report, a structural comparison between the Sars-CoV-2 Envelope and Membrane proteins from different human isolates with homologous proteins from closely related viruses is described. The analyses here reported show the high structural similarity of Envelope and Membrane proteins to the counterparts from Pangolin and Bat coronavirus isolates. However, the comparisons have also highlighted structural differences specific of Sars-CoV-2 proteins which may be correlated to the cross-species transmission and/or to the properties of the virus. Structural modelling has been applied to map the variant sites onto the predicted three-dimensional structure of the Envelope and Membrane proteins.


Asunto(s)
Betacoronavirus/química , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Proteínas del Envoltorio Viral/química , Proteínas de la Matriz Viral/química , Alphacoronavirus/química , Alphacoronavirus/clasificación , Alphacoronavirus/genética , Secuencia de Aminoácidos , Animales , Betacoronavirus/clasificación , Betacoronavirus/genética , COVID-19 , Quirópteros/virología , Coronaviridae/química , Coronaviridae/clasificación , Coronaviridae/genética , Proteínas de la Envoltura de Coronavirus , Euterios/virología , Humanos , Modelos Moleculares , Pandemias , Conformación Proteica , SARS-CoV-2 , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Homología Estructural de Proteína , Proteínas del Envoltorio Viral/genética , Proteínas de la Matriz Viral/genética
19.
J Infect ; 81(1): e24-e27, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32283146

RESUMEN

BACKGROUND: SARS-CoV-2 is a new coronavirus that has spread globally, infecting more than 150000 people, and being declared pandemic by the WHO. We provide here bio-informatic, evolutionary analysis of 351 available sequences of its genome with the aim of mapping genome structural variations and the patterns of selection. METHODS: A Maximum likelihood tree has been built and selective pressure has been investigated in order to find any mutation developed during the SARS-CoV-2 epidemic that could potentially affect clinical evolution of the infection. FINDING: We have found in more recent isolates the presence of two mutations affecting the Non-Structural Protein 6 (NSP6) and the Open Reding Frame10 (ORF 10) adjacent regions. Amino acidic change stability analysis suggests both mutations could confer lower stability of the protein structures. INTERPRETATION: One of the two mutations, likely developed within the genome during virus spread, could affect virus intracellular survival. Genome follow-up of SARS-CoV-2 spread is urgently needed in order to identify mutations that could significantly modify virus pathogenicity.


Asunto(s)
Betacoronavirus/genética , Proteínas de la Cápside/genética , Infecciones por Coronavirus/virología , Mutación , Neumonía Viral/virología , Autofagia , COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Evolución Molecular , Regulación Viral de la Expresión Génica , Genoma Viral , Humanos , Funciones de Verosimilitud , Modelos Moleculares , Sistemas de Lectura Abierta , Pandemias , Conformación Proteica , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA