Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nucleic Acids Res ; 50(2): 651-673, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34967410

RESUMEN

Antisense sequence-specific knockdown of pathogenic RNA offers opportunities to find new solutions for therapeutic treatments. However, to gain a desired therapeutic effect, the multiple turnover catalysis is critical to inactivate many copies of emerging RNA sequences, which is difficult to achieve without sacrificing the sequence-specificity of cleavage. Here, engineering two or three catalytic peptides into the bulge-loop inducing molecular framework of antisense oligonucleotides achieved catalytic turnover of targeted RNA. Different supramolecular configurations revealed that cleavage of the RNA backbone upon sequence-specific hybridization with the catalyst accelerated with increase in the number of catalytic guanidinium groups, with almost complete demolition of target RNA in 24 h. Multiple sequence-specific cuts at different locations within and around the bulge-loop facilitated release of the catalyst for subsequent attacks of at least 10 further RNA substrate copies, such that delivery of only a few catalytic molecules could be sufficient to maintain knockdown of typical RNA copy numbers. We have developed fluorescent assay and kinetic simulation tools to characterise how the limited availability of different targets and catalysts had restrained catalytic reaction progress considerably, and to inform how to accelerate the catalytic destruction of shorter linear and larger RNAs even further.


Asunto(s)
Conformación de Ácido Nucleico , División del ARN , ARN/química , Ribonucleasas/química , Secuencia de Aminoácidos , Secuencia de Bases , Bioensayo/métodos , Catálisis , Cinética , Modelos Biológicos , Hibridación de Ácido Nucleico , Oligonucleótidos/síntesis química , Oligonucleótidos/química , Oligonucleótidos/aislamiento & purificación , Péptidos/síntesis química , Péptidos/química , Péptidos/aislamiento & purificación , Ribonucleasas/metabolismo , Relación Estructura-Actividad
2.
Nucleic Acids Res ; 48(19): 10662-10679, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33010175

RESUMEN

Potent knockdown of pathogenic RNA in vivo is an urgent health need unmet by both small-molecule and biologic drugs. 'Smart' supramolecular assembly of catalysts offers precise recognition and potent destruction of targeted RNA, hitherto not found in nature. Peptidyl-oligonucleotide ribonucleases are here chemically engineered to create and attack bulge-loop regions upon hybridization to target RNA. Catalytic peptide was incorporated either via a centrally modified nucleotide (Type 1) or through an abasic sugar residue (Type 2) within the RNA-recognition motif to reveal striking differences in biological performance and strict structural demands of ribonuclease activity. None of the Type 1 conjugates were catalytically active, whereas all Type 2 conjugates cleaved RNA target in a sequence-specific manner, with up to 90% cleavage from 5-nt bulge-loops (BC5-α and BC5L-ß anomers) through multiple cuts, including in folds nearby. Molecular dynamics simulations provided structural explanation of accessibility of the RNA cleavage sites to the peptide with adoption of an 'in-line' attack conformation for catalysis. Hybridization assays and enzymatic probing with RNases illuminated how RNA binding specificity and dissociation after cleavage can be balanced to permit turnover of the catalytic reaction. This is an essential requirement for inactivation of multiple copies of disease-associated RNA and therapeutic efficacy.


Asunto(s)
Oligonucleótidos/química , Péptidos/química , ARN/química , Ribonucleasas/química , Dominio Catalítico , Técnicas de Silenciamiento del Gen/métodos , Simulación de Dinámica Molecular , Péptidos/metabolismo , Ribonucleasas/metabolismo
3.
Anal Chem ; 91(15): 10016-10025, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31246004

RESUMEN

DNA and RNA biomarkers have not progressed beyond the automated specialized clinic due to failure in the reproducibility necessary to standardize robust and rapid nucleic acid detection at the point of care, where health outcomes can be most improved by early-stage diagnosis and precise monitoring of therapy and disease prognosis. We demonstrate here a new analytical platform to meet this challenge using functional 3D hydrogels engineered from peptide and oligonucleotide building blocks to provide sequence-specific, PCR-free fluorescent detection of unlabeled nucleic acid sequences. We discriminated at picomolar detection limits (<7 pM) "perfect-match" from mismatched sequences, down to a single nucleotide mutation, buried within longer lengths of the target. Detailed characterization by NMR, TEM, mass spectrometry, and rheology provided the structural understanding to design these hybrid peptide-oligonucleotide biomaterials with the desired sequence sensitivity and detection limit. We discuss the generic design, which is based on a highly predictable secondary structure of the oligonucleotide components, as a platform to detect genetic abnormalities and to screen for pathogenic conditions at the level of both DNA (e.g., SNPs) and RNA (messenger, micro, and viral genomic RNA).


Asunto(s)
Hidrogeles/química , Ácidos Nucleicos/análisis , Reacción en Cadena de la Polimerasa/métodos , Disparidad de Par Base , Secuencia de Bases , Límite de Detección , Hibridación de Ácido Nucleico , Oligonucleótidos/síntesis química , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Péptidos/síntesis química , Péptidos/química , Péptidos/metabolismo
4.
Bioconjug Chem ; 26(6): 1129-43, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-25955796

RESUMEN

Described here is a new class of peptidyl-oligonucleotide conjugates (POCs) which show efficient cleavage of a target RNA in a sequence-specific manner. Through phosphoramidate attachment of a 17-mer TΨC-targeting oligonucleotide to amphiphilic peptide sequences containing leucine, arginine, and glycine, zero-linker conjugates are created which exhibit targeted phosphodiester cleavage under physiological conditions. tRNA(Phe) from brewer's yeast was used as a model target sequence in order to probe different structural variants of POCs in terms of selective TΨC-arm directed cleavage. Almost quantitative (97-100%) sequence-specific tRNA cleavage is observed for several POCs over a 24 h period with a reaction half-life of less than 1 h. Nontargeted cleavage of tRNA(Phe) or HIV-1 RNA is absent. Structure-activity relationships reveal that removal of the peptide's central glycine residue significantly decreases tRNA cleavage activity; however, this can be entirely restored through replacement of the peptide's C-terminal carboxylic acid group with the carboxamide functionality. Truncation of the catalytic peptide also has a detrimental effect on POC activity. Based on the encouraging results presented, POCs could be further developed with the aim of creating useful tools for molecular biology or novel therapeutics targeting specific messenger, miRNA, and genomic viral RNA sequences.


Asunto(s)
Oligonucleótidos/química , Oligonucleótidos/metabolismo , Péptidos/química , Péptidos/metabolismo , ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Hongos/química , ARN de Transferencia/química , Saccharomyces cerevisiae/química , Relación Estructura-Actividad , Especificidad por Sustrato
5.
Biochim Biophys Acta ; 1809(1): 1-23, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21111076

RESUMEN

This article presents an overview of new emerging approaches for nucleic acid detection via hybridization techniques that can potentially be applied to genomic analysis and SNP identification in clinical diagnostics. Despite the availability of a diverse variety of SNP genotyping technologies on the diagnostic market, none has truly succeeded in dominating its competitors thus far. Having been designed for specific diagnostic purposes or clinical applications, each of the existing bio-assay systems (briefly outlined here) is usually limited to a relatively narrow aspect or format of nucleic acid detection, and thus cannot entirely satisfy all the varieties of commercial requirements and clinical demands. This drives the diagnostic sector to pursue novel, cost-effective approaches to ensure rapid and reliable identification of pathogenic or hereditary human diseases. Hence, the purpose of this review is to highlight some new strategic directions in DNA detection technologies in order to inspire development of novel molecular diagnostic tools and bio-assay systems with superior reliability, reproducibility, robustness, accuracy and sensitivity at lower assay cost. One approach to improving the sensitivity of an assay to confidently discriminate between single point mutations is based on the use of target assembled, split-probe systems, which constitutes the main focus of this review.


Asunto(s)
ADN/análisis , Genoma Humano/genética , Hibridación de Ácido Nucleico/métodos , Polimorfismo de Nucleótido Simple , ADN/genética , Sondas de ADN/genética , Genotipo , Humanos , Reproducibilidad de los Resultados
6.
J Biomol Struct Dyn ; 39(7): 2555-2574, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32248755

RESUMEN

Sequence-specific protein-based ribonucleases are not found in nature. Absolute sequence selectivity in RNA cleavage in vivo normally requires multi-component complexes that recruit a guide RNA or DNA for target recognition and a protein-RNA assembly for catalytic functioning (e.g. RNAi molecular machinery, RNase H). Recently discovered peptidyl-oligonucleotide synthetic ribonucleases selectively knock down pathogenic RNAs by irreversible cleavage to offer unprecedented opportunities for control of disease-relevant RNA. Understanding how to increase their potency, selectivity and catalytic turnover will open the translational pathway to successful therapeutics. Yet, very little is known about how these chemical ribonucleases bind, cleave and leave their target. Rational design awaits this understanding in order to control therapy, particularly how to overcome the trade-off between sequence specificity and potency through catalytic turnover. We illuminate this here by characterizing the interactions of these chemical RNases with both complementary and non-complementary RNAs using Tm profiles, fluorescence, UV-visible and NMR spectroscopies. Crucially, the level of counter cations, which are tightly-controlled within cellular compartments, also controlled these interactions. The oligonucleotide component dominated interaction between conjugates and complementary targets in the presence of physiological levels of counter cations (K+), sufficient to prevent repulsion between the complementary nucleic acid strands to allow Watson-Crick hydrogen bonding. In contrast, the positively-charged catalytic peptide interacted poorly with target RNA, when counter cations similarly screened the negatively-charged sugar-phosphate RNA backbones. The peptide only became the key player, when counter cations were insufficient for charge screening; moreover, only under such non-physiological conditions did conjugates form strong complexes with non-complementary RNAs.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Oligonucleótidos , ARN , Catálisis , ADN , Oligonucleótidos/genética , ARN/genética , Ribonucleasas
7.
Biophys J ; 98(9): L38-40, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20441732

RESUMEN

Molecular dynamics investigations into active site plasticity of Trypanosoma cruzi trans-sialidase, a protein implicated in Chagas disease, suggest that movement of the Trp(312) loop plays an important role in the enzyme's sialic acid transfer mechanism. The observed Trp(312) flexibility equates to a molecular shovel action, which leads to the expulsion of the donor aglycone leaving group from the catalytic site. These computational simulations provide detailed structural insights into sialyl transfer by the trans-sialidase and may aid the design of inhibitors effective against this neglected tropical disease.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Neuraminidasa/química , Neuraminidasa/metabolismo , Trypanosoma cruzi/enzimología , Triptófano/metabolismo , Biocatálisis , Dominio Catalítico , Glicosilación , Simulación de Dinámica Molecular , Ácido N-Acetilneuramínico/metabolismo
9.
Org Biomol Chem ; 8(12): 2850-8, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20428590

RESUMEN

myo-Inositol phosphates possessing the 1,2,3-trisphosphate motif share the remarkable ability to completely inhibit iron-catalysed hydroxyl radical formation. The simplest derivative, myo-inositol 1,2,3-trisphosphate [Ins(1,2,3)P(3)], has been proposed as an intracellular iron chelator involved in iron transport. The binding conformation of Ins(1,2,3)P(3) is considered to be important to complex Fe(3+) in a 'safe' manner. Here, a pyrene-based fluorescent probe, 4,6-bispyrenoyl-myo-inositol 1,2,3,5-tetrakisphosphate [4,6-bispyrenoyl Ins(1,2,3,5)P(4)], has been synthesised and used to monitor the conformation of the 1,2,3-trisphosphate motif using excimer fluorescence emission. Ring-flip of the cyclohexane chair to the penta-axial conformation occurs upon association with Fe(3+), evident from excimer fluorescence induced by pi-pi stacking of the pyrene reporter groups, accompanied by excimer formation by excitation at 351 nm. This effect is unique amongst biologically relevant metal cations, except for Ca(2+) cations exceeding a 1 : 1 molar ratio. In addition, the thermodynamic constants for the interaction of the fluorescent probe with Fe(3+) have been determined. The complexes formed between Fe(3+) and 4,6-bispyrenoyl Ins(1,2,3,5)P(4) display similar stability to those formed with Ins(1,2,3)P(3), indicating that the fluorescent probe acts as a good model for the 1,2,3-trisphosphate motif. This is further supported by the antioxidant properties of 4,6-bispyrenoyl Ins(1,2,3,5)P(4), which closely resemble those obtained for Ins(1,2,3)P(3). The data presented confirms that Fe(3+) binds tightly to the unstable penta-axial conformation of myo-inositol phosphates possessing the 1,2,3-trisphosphate motif.


Asunto(s)
Colorantes Fluorescentes/química , Fosfatos de Inositol/química , Quelantes del Hierro/química , Pirenos/química , Inositol 1,4,5-Trifosfato/química , Relación Estructura-Actividad
10.
Front Pharmacol ; 10: 879, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456683

RESUMEN

Control of the expression of oncogenic small non-coding RNAs, notably microRNAs (miRNAs), is an attractive therapeutic approach. We report a design platform for catalytic knockdown of miRNA targets with artificial, sequence-specific ribonucleases. miRNases comprise a peptide [(LeuArg)2Gly]2 capable of RNA cleavage conjugated to the miRNA-targeted oligodeoxyribonucleotide, which becomes nuclease-resistant within the conjugate design, without resort to chemically modified nucleotides. Our data presented here showed for the first time a truly catalytic character of our miR-21-miRNase and its ability to cleave miR-21 in a multiple catalytic turnover mode. We demonstrate that miRNase targeted to miR-21 (miR-21-miRNase) knocked down malignant behavior of tumor cells, including induction of apoptosis, inhibition of cell invasiveness, and retardation of tumor growth, which persisted on transplantation into mice of tumor cells treated once with miR-21-miRNase. Crucially, we discover that the high biological activity of miR-21-miRNase can be directly related not only to its truly catalytic sequence-specific cleavage of miRNA but also to its ability to recruit the non-sequence specific RNase H found in most cells to elevate catalytic turnover further. miR-21-miRNase worked synergistically even with low levels of RNase H. Estimated degradation in the presence of RNase H exceeded 103 miRNA target molecules per hour for each miR-21-miRNase molecule, which provides the potency to minimize delivery requirements to a few molecules per cell. In contrast to the comparatively high doses required for the simple steric block of antisense oligonucleotides, truly catalytic inactivation of miRNA offers more effective, irreversible, and persistent suppression of many copy target sequences. miRNase design can be readily adapted to target other pathogenic microRNAs overexpressed in many disease states.

12.
J Biomol Struct Dyn ; 25(6): 629-40, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18399696

RESUMEN

We report the first use of exciplex-based split-probes for detection of the wild type and *3 mutant alleles of human cytochrome P450 2C9. A tandem 8-mer split DNA oligonucleotide probe system was designed that allows detection of the complementary target DNA sequence. This exciplex-based fluorescence detector system operates by means of a contiguous hybridization of two oligonucleotide exciplex split-probes to a complementary target nucleic acid target. Each probe oligonucleotide is chemically modified at one of its termini by a potential exciplex-forming partner, each of which is fluorescently silent at the wavelength of detection. Under conditions that ensure correct three-dimensional assembly, the chemical moieties on suitable photoexcitation form an exciplex that fluoresces with a large Stokes shift (in this case 130 nm). Preliminary proof-of-concept studies used two 8-mer probe oligonucleotides, but in order to give better specificity for genomic applications, probe length was extended to give coverage of 24 bases. Eight pairs of tandem 12-mer oligonucleotide probes spanning the 2C9*3 region were designed and tested to find the best set of probes. Target sequences tested were in the form of (i) synthetic oligonucleotides, (ii) embedded in short PCR products (150 bp), or (iii) inserted into plasmid DNA (approximately 3 Kbp). The exciplex system was able to differentiate wild type and human cytochrome P450 2C9 *3 SNP (1075 A-->C) alleles, based on fluorescence emission spectra and DNA melting curves, indicating promise for future applications in genetic testing and molecular diagnostics.


Asunto(s)
Alelos , Hidrocarburo de Aril Hidroxilasas/genética , Sondas de Oligonucleótidos/química , Polimorfismo de Nucleótido Simple , Citocromo P-450 CYP2C9 , Colorantes Fluorescentes/química , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
13.
Biosci Rep ; 28(1): 1-5, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18215149

RESUMEN

Scorpion probes, specific DNA probe sequences maintained in a hairpin-loop, can be modified to carry the components of an exciplex for use as a novel fluorescence-based method for specific detection of DNA. The exciplex partners (5'-pyrenyl and 3'-naphthalenyl) were attached to oligonucleotides via phosphoramidate links to terminal phosphate groups. Hybridization of the probe to a complementary target in a buffer containing trifluoroethanol produced an obvious fluorescence change from blue (pyrene locally excited state emission) to green (exciplex emission).


Asunto(s)
Sondas de ADN/metabolismo , Sondas de Oligonucleótidos/metabolismo , Colorantes Fluorescentes , Hibridación de Ácido Nucleico , Reacción en Cadena de la Polimerasa/métodos , Espectrometría de Fluorescencia
14.
J Biomol Struct Dyn ; 25(3): 219-30, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17937484

RESUMEN

Recently, we introduced a novel exciplex-based approach for detection of nucleic acids using a model DNA-mounted exciplex system, consisting of two 8-mer ExciProbes hybridized to a complementary 16-mer DNA target. We now show, for the first time, that this approach can be used to detect DNA at the level of PCR product and plasmid, when the target sequence (5'-GCCAAACACAGAATCG-3') was embedded in long DNA molecules (PCR products and approximately 3 Kbp plasmid). A remarkably stringent demand is made of the solvent conditions for this exciplex emission to occur, viz., emission is optimal for DNA at 80% trifluoroethanol, even in the plasmid situations, raising the question of the molecular structural basis of this system. We show that a perfectly matched plasmid target can be differentiated from target containing single nucleotide substitutions; hence, ExciProbes could be applied to SNP analysis. The effect of counter cations (Na(+), K(+), and Mg(2+)) and PCR additives on exciplex emission has been also examined.


Asunto(s)
Sondas de ADN/química , ADN/análisis , Plásmidos/química , Secuencia de Bases , ADN/química , Modelos Biológicos , Biología Molecular/métodos , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Plásmidos/genética , Reacción en Cadena de la Polimerasa
15.
Biomaterials ; 112: 44-61, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27744220

RESUMEN

Traditional therapeutic interventions against abnormal gene expression in disease states at the level of expressed proteins are becoming increasingly difficult due to poor selectivity, off-target effects and associated toxicity. Upstream catalytic targeting of specific RNA sequences offers an alternative platform for drug discovery to achieve more potent and selective treatment through antisense interference with disease-relevant RNAs. We report a novel class of catalytic biomaterials, comprising amphipathic RNA-cleaving peptides placed between two RNA recognition motifs, here demonstrated to target the TΨC loop and 3'- acceptor stem of tRNAPhe. These unique peptidyl-oligonucleotide 'dual' conjugates (DCs) were created by phosphoramidate or thiol-maleimide conjugation chemistry of a TΨC-targeting oligonucleotide to the N-terminus of the amphipathic peptide sequence, followed by amide coupling of a 3'-acceptor stem-targeting oligonucleotide to the free C-terminal carboxylic acid functionality of the same peptide. Hybridization of the DCs bearing two spatially-separated recognition motifs with the target tRNAPhe placed the peptide adjacent to a single-stranded RNA region and promoted cleavage within the 'action radius' of the catalytic peptide. Up to 100% cleavage of the target tRNAPhe was achieved by the best candidate (i.e. DC6) within 4 h, when conformational flexibility was introduced into the linker regions between the peptide and oligonucleotide components. This study provides the strong position for future development of highly selective RNA-targeting agents that can potentially be used for disease-selective treatment at the level of messenger, micro, and genomic viral RNA.


Asunto(s)
Marcación de Gen/métodos , Nanoconjugados/química , Nanoconjugados/ultraestructura , Péptidos/química , ARN de Transferencia/química , ARN de Transferencia/genética , Sitios de Unión , Catálisis , Reactivos de Enlaces Cruzados/química , Diseño de Fármacos , Unión Proteica , Conformación Proteica , ARN de Transferencia/ultraestructura , Relación Estructura-Actividad
16.
Biomaterials ; 122: 163-178, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28126663

RESUMEN

MicroRNAs (miRNAs) are active regulators in malignant growth and constitute potential targets for anticancer therapy. Consequently, considerable effort has focused on identifying effective ways to modulate aberrant miRNA expression. Here we introduce and assess a novel type of chemically engineered biomaterial capable of cleaving specific miRNA sequences, i.e. miRNA-specific artificial ribonucleases (hereafter 'miRNase'). The miRNase template presented here consists of the catalytic peptide Acetyl-[(LeuArg)2Gly]2 covalently attached to a miRNA-targeting oligonucleotide, which can be linear or hairpin. The peptide C-terminus is conjugated to an aminohexyl linker located at either the 3'- or 5'-end of the oligonucleotide. The cleavage efficacy, structural aspects of cleavage and biological relevance of a set of these designed miRNases was assayed with respect to highly oncogenic miR-21. Several miRNases demonstrated effective site-selective cleavage of miR-21 exclusively at G-X bonds. One of the most efficient miRNase was shown to specifically inhibit miR-21 in lymphosarcoma cells and lead to a reduction in their proliferative activity. This report provides the first experimental evidence that metallo-independent peptide-oligonucleotide chemical ribonucleases are able to effectively and selectively down-regulate oncogenic miRNA in tumour cells, thus suggesting their potential in development of novel therapeutics aimed at overcoming overexpression of disease-related miRNAs.


Asunto(s)
Linfoma no Hodgkin/genética , Linfoma no Hodgkin/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Oligonucleótidos/administración & dosificación , Péptidos/administración & dosificación , Ribonucleasas/administración & dosificación , Animales , Línea Celular Tumoral , Ratones , Oligonucleótidos/química , Péptidos/química , Ribonucleasas/química
17.
Biochim Biophys Acta ; 1730(1): 47-55, 2005 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-16005529

RESUMEN

Porphyrins and porphines strongly inhibit the action of the RNA subunit of the Escherichia coli ribonuclease P (M1 RNA). Meso-tetrakis(N-methyl-pyridyl)porphine followed linear competitive kinetics with pre-tRNA(Gly1) from E. coli as variable substrate (Ki 0.960 microM). Protoporphyrin IX showed linear competitive inhibition versus pre-tRNA(Gly1) from E. coli (Ki 1.90 microM). Inhibition by meso-tetrakis[4-(trimethylammonio)phenyl]porphine versus pre-tRNA(Gly1) from E. coli followed non-competitive kinetics (Ki 4.1 microM). The porphyrins bound directly to E. coli tRNAVal, E. coli pre-tRNAGly1 and M1 RNA and dissociation constants for the 1:1 complexes were determined using fluorescence spectroscopy. Dissociation constants (microM) against E. coli tRNAVal and E. coli pre-tRNAGly were: meso-tetrakis(N-methyl-pyridyl)porphine 1.21 and 0.170; meso-tetrakis[4-(trimethylammonio)phenyl]porphine, 0.107 and 0.293; protoporphyrin IX, 0.138 and 0.0819. For M1 RNA, dissociation constants were 32.8 nM for meso-tetrakis(N-methyl-pyridyl)porphine and 59.8 nM for meso-tetrakis[4-(trimethylammonio)phenyl]porphine and excitation and emission spectra indicate a binding mode with strong pi-stacking of the porphine nucleus and base pairs in a rigid low-polarity environment. Part of the inhibition of ribonuclease P is from interaction with the pre-tRNA substrate, resulting from porphyrin binding to the D-loop/T-loop region which interfaces with M1 RNA during catalysis, and part from the porphyrin binding to the M1 RNA component.


Asunto(s)
Proteínas de Escherichia coli/antagonistas & inhibidores , Porfirinas/metabolismo , Precursores del ARN/metabolismo , ARN de Transferencia/metabolismo , Ribonucleasa P/antagonistas & inhibidores , Escherichia coli , Cinética , Porfirinas/química , Unión Proteica , Espectrometría de Fluorescencia
18.
Nucleic Acids Res ; 32(13): 3887-97, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15273275

RESUMEN

Antisense oligonucleotide conjugates, bearing constructs with two imidazole residues, were synthesized using a precursor-based technique employing post-synthetic histamine functionalization of oligonucleotides bearing methoxyoxalamido precursors at the 5'-termini. The conjugates were assessed in terms of their cleavage activities using both biochemical assays and conformational analysis by molecular modelling. The oligonucleotide part of the conjugates was complementary to the T-arm of yeast tRNA(Phe) (44-60 nt) and was expected to deliver imidazole groups near the fragile sequence C61-ACA-G65 of the tRNA. The conjugates showed ribonuclease activity at neutral pH and physiological temperature resulting in complete cleavage of the target RNA, mainly at the C63-A64 phosphodiester bond. For some constructs, cleavage was completed within 1-2 h under optimal conditions. Molecular modelling was used to determine the preferred orientation(s) of the cleaving group(s) in the complexes of the conjugates with RNA target. Cleaving constructs bearing two imidazole residues were found to be conformationally highly flexible, adopting no preferred specific conformation. No interactions other than complementary base pairing between the conjugates and the target were found to be the factors stabilizing the 'active' cleaving conformation(s).


Asunto(s)
Imidazoles/química , Oligonucleótidos Antisentido/síntesis química , Ribonucleasas/síntesis química , Secuencia de Bases , Modelos Moleculares , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , Especificidad por Sustrato
19.
Chem Commun (Camb) ; 52(40): 6697-700, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27117274

RESUMEN

We report here the first experimental evidence of a self-assembling three-dimensional (3D) peptide hydrogel, with recognition motifs immobilized on the surface of fibres capable of sequence-specific oligonucleotide detection. These systems have the potential to be further developed into diagnostic and prognostic tools in human pathophysiology.


Asunto(s)
Técnicas Biosensibles , Hidrogel de Polietilenoglicol-Dimetacrilato/síntesis química , Ácidos Nucleicos Inmovilizados/química , Péptidos/síntesis química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Péptidos/química , Propiedades de Superficie
20.
Eur J Med Chem ; 111: 33-45, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26854376

RESUMEN

NRH:quinone oxidoreductase 2 enzyme (NQO2) is a potential therapeutic target in cancer and neurodegenerative diseases, with roles in either chemoprevention or chemotherapy. Here we report the design, synthesis and evaluation of non-symmetrical furan-amidines and their analogues as novel selective NQO2 inhibitors with reduced adverse off-target effects, such as binding to DNA. A pathway for the synthesis of the non-symmetrical furan-amidines was established from the corresponding 1,4-diketones. The synthesized non-symmetrical furan-amidines and their analogues showed potent NQO2 inhibition activity with nano-molar IC50 values. The most active compounds were non-symmetrical furan-amidines with meta- and para-nitro substitution on the aromatic ring, with IC50 values of 15 nM. In contrast to the symmetric furan-amidines, which showed potent intercalation in the minor grooves of DNA, the synthesized non-symmetrical furan-amidines showed no affinity towards DNA, as demonstrated by DNA melting temperature experiments. In addition, Plasmodium parasites, which possess their own quinone oxidoreductase PfNDH2, were inhibited by the non-symmetrical furan-amidines, the most active possessing a para-fluoro substituent (IC50 9.6 nM). The high NQO2 inhibition activity and nanomolar antimalarial effect of some of these analogues suggest the lead compounds are worthy of further development and optimization as potential drugs for novel anti-cancer and antimalarial strategies.


Asunto(s)
Amidinas/farmacología , Antimaláricos/farmacología , Antineoplásicos/farmacología , Furanos/farmacología , Malaria/tratamiento farmacológico , Plasmodium/efectos de los fármacos , Amidinas/síntesis química , Amidinas/química , Antimaláricos/síntesis química , Antimaláricos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Furanos/síntesis química , Furanos/química , Humanos , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA