Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Exp Biol ; 226(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37282982

RESUMEN

Recent studies of in vivo muscle function in guinea fowl revealed that distal leg muscles rapidly modulate force and work to stabilize running in uneven terrain. Previous studies focused on running only, and it remains unclear how muscular mechanisms for stability differ between walking and running. Here, we investigated in vivo function of the lateral gastrocnemius (LG) during walking over obstacles. We compared muscle function in birds with intact (iLG) versus self-reinnervated LG (rLG). Self-reinnervation results in proprioceptive feedback deficit due to loss of monosynaptic stretch reflex. We tested the hypothesis that proprioceptive deficit results in decreased modulation of EMG activity in response to obstacle contact, and a delayed obstacle recovery compared with that for iLG. We found that total myoelectric intensity (Etot) of iLG increased by 68% in obstacle strides (S 0) compared with level terrain, suggesting a substantial reflex-mediated response. In contrast, Etot of rLG increased by 31% in S 0 strides compared with level walking, but also increased by 43% in the first post-obstacle (S +1) stride. In iLG, muscle force and work differed significantly from level walking only in the S 0 stride, indicating a single-stride recovery. In rLG, force increased in S 0, S +1 and S +2 compared with level walking, indicating three-stride obstacle recovery. Interestingly, rLG showed little variation in work output and shortening velocity in obstacle terrain, indicating a shift towards near-isometric strut-like function. Reinnervated birds also adopted a more crouched posture across level and obstacle terrains compared with intact birds. These findings suggest gait-specific control mechanisms in walking and running.


Asunto(s)
Galliformes , Caminata , Animales , Fenómenos Biomecánicos , Caminata/fisiología , Músculo Esquelético/fisiología , Marcha/fisiología , Galliformes/fisiología
2.
J Exp Biol ; 224(Pt 3)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33376144

RESUMEN

Although cycling is a seemingly simple, reciprocal task, muscles must adapt their function to satisfy changes in mechanical demands induced by higher crank torques and faster pedalling cadences. We examined whether muscle function was sensitive to these changes in mechanical demands across a wide range of pedalling conditions. We collected experimental data of cycling where crank torque and pedalling cadence were independently varied from 13 to 44 N m and 60 to 140 rpm. These data were used in conjunction with musculoskeletal simulations and a recently developed functional index-based approach to characterise the role of human lower-limb muscles. We found that in muscles that generate most of the mechanical power and work during cycling, greater crank torque induced shifts towards greater muscle activation, greater positive muscle-tendon unit (MTU) work and a more motor-like function, particularly in the limb extensors. Conversely, with faster pedalling cadence, the same muscles exhibited a phase advance in muscle activity prior to crank top dead centre, which led to greater negative MTU power and work and shifted the muscles to contract with more spring-like behaviour. Our results illustrate the capacity for muscles to adapt their function to satisfy the mechanical demands of the task, even during highly constrained reciprocal tasks such as cycling. Understanding how muscles shift their contractile performance under varied mechanical and environmental demands may inform decisions on how to optimise pedalling performance and to design targeted cycling rehabilitation therapies for muscle-specific injuries or deficits.


Asunto(s)
Ciclismo , Contracción Muscular , Fenómenos Biomecánicos , Humanos , Extremidad Inferior , Músculo Esquelético , Músculos , Torque
3.
J Anat ; 237(3): 568-578, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32584456

RESUMEN

This study assesses the functional morphology of the ankle extensor muscle-tendon units of the springhare Pedetes capensis, an African bipedal hopping rodent, to test for convergent evolution with the Australian bipedal hopping macropods. We dissect and measure the gastrocnemius, soleus, plantaris, and flexor digitorum longus in 10 adult springhares and compare them against similar-sized macropods using phylogenetically informed scaling analyses. We show that springhares align reasonably well with macropod predictions, being statistically indistinguishable with respect to the ankle extensor mean weighted muscle moment arm (1.63 vs. 1.65 cm, respectively), total muscle mass (41.1 vs. 29.2 g), total muscle physiological cross-sectional area (22.9 vs. 19.3 cm2 ), mean peak tendon stress (26.2 vs. 35.2 MPa), mean tendon safety factor (4.7 vs. 3.6), and total tendon strain energy return capacity (1.81 vs. 1.82 J). However, total tendon cross-sectional area is significantly larger in springhares than predicted for a similar-sized macropod (0.26 vs. 0.17 cm2 , respectively), primarily due to a greater plantaris tendon thickness (0.084 vs. 0.048 cm2 ), and secondarily because the soleus muscle-tendon unit is present in springhares but is vestigial in macropods. The overall similarities between springhares and macropods indicate that evolution has favored comparable lower hindlimb body plans for bipedal hopping locomotion in the two groups of mammals that last shared a common ancestor ~160 million years ago. The springhare's relatively thick plantaris tendon may facilitate rapid transfer of force from muscle to skeleton, enabling fast and accelerative hopping, which could help to outpace and outmaneuver predators.


Asunto(s)
Articulación del Tobillo/anatomía & histología , Tobillo/anatomía & histología , Evolución Biológica , Locomoción/fisiología , Macropodidae/anatomía & histología , Músculo Esquelético/anatomía & histología , Roedores/anatomía & histología , Animales , Tobillo/fisiología , Articulación del Tobillo/fisiología , Australia , Macropodidae/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Roedores/fisiología , Tendones/fisiología
4.
J Exp Biol ; 223(Pt 16)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32587070

RESUMEN

Mallard ducks are capable of performing a wide range of behaviors including nearly vertical takeoffs from both terrestrial and aquatic habitats. The hindlimb plays a key role during takeoffs from both media. However, because force generation differs in water versus on land, hindlimb kinematics and muscle function are likely modulated between these environments. Specifically, we hypothesize that hindlimb joint motion and muscle shortening are faster during aquatic takeoffs, but greater hindlimb muscle forces are generated during terrestrial takeoffs. In this study, we examined the hindlimb kinematics and in vivo contractile function of the lateral gastrocnemius (LG), a major ankle extensor and knee flexor, during takeoffs from water versus land in mallard ducks. In contrast to our hypothesis, we observed no change in ankle angular velocity between media. However, the hip and metatarsophalangeal joints underwent large excursions during terrestrial takeoffs but exhibited almost no motion during aquatic takeoffs. The knee extended during terrestrial takeoffs but flexed during aquatic takeoffs. Correspondingly, LG fascicle shortening strain, shortening velocity and pennation angle change were greater during aquatic takeoffs than during terrestrial takeoffs because of the differences in knee motion. Nevertheless, we observed no significant differences in LG stress or work, but did see an increase in muscle power output during aquatic takeoffs. Because differences in the physical properties of aquatic and terrestrial media require differing hindlimb kinematics and muscle function, animals such as mallards may be challenged to tune their muscle properties for movement across differing environments.


Asunto(s)
Patos , Contracción Muscular , Animales , Fenómenos Biomecánicos , Electromiografía , Miembro Posterior , Músculo Esquelético
5.
J Exp Biol ; 223(Pt 19)2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32737211

RESUMEN

Most of what we know about whole muscle behaviour comes from experiments on single fibres or small muscles that are scaled up in size without considering the effects of the additional muscle mass. Previous modelling studies have shown that tissue inertia acts to slow the rate of force development and maximum velocity of muscle during shortening contractions and decreases the work and power per cycle during cyclic contractions; however, these results have not yet been confirmed by experiments on living tissue. Therefore, in this study we conducted in situ work-loop experiments on rat plantaris muscle to determine the effects of increasing the mass of muscle on mechanical work during cyclic contractions. We additionally simulated these experimental contractions using a mass-enhanced Hill-type model to validate our previous modelling work. We found that greater added mass resulted in lower mechanical work per cycle relative to the unloaded trials in which no mass was added to the muscle (P=0.041 for both 85 and 123% increases in muscle mass). We additionally found that greater strain resulted in lower work per cycle relative to unloaded trials at the same strain to control for length change and velocity effects on the work output, possibly due to greater accelerations of the muscle mass at higher strains. These results confirm that tissue mass reduces muscle mechanical work at larger muscle sizes, and that this effect is likely amplified for lower activations.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Animales , Ratas
6.
Biol Lett ; 16(6): 20200255, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32516563

RESUMEN

Muscle can experience post-activation potentiation (PAP), a temporary increase in force and rate of force development, when contractions are closely timed; therefore, cyclical behaviours are likely affected by PAP, as succeeding contraction cycles can lead to potentiation over several subsequent cycles. Here, we examined PAP during in situ cyclical contractions of the mallard lateral gastrocnemius (LG). Surface swimming, a cyclical behaviour, was mimicked with work-loops using in vivo LG length change and stimulation parameters. Tests were performed at mallards' preferred cycle frequency as well as at lower and higher frequencies. Like muscles from mammals, anurans and arthropods, the mallard LG exhibited PAP with increases in peak force, average force rate and net work. Staircase potentiation occurred over two or more work-loop cycles, resulting in gradual increases in PAP. The number of cycles needed to reach maximum work varied with cycle frequency, requiring more cycles at higher cycle frequencies. PAP occurred under in vivo-like stimulation parameters, suggesting a potentially important role of PAP in animal locomotion, especially in cyclical behaviours.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Animales , Patos , Locomoción , Natación
7.
Nature ; 574(7777): 180-181, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31591548
8.
J Exp Biol ; 222(Pt 24)2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31753907

RESUMEN

Muscle function changes to meet the varying mechanical demands of locomotion across different gait and grade conditions. A muscle's work output is determined by time-varying patterns of neuromuscular activation, muscle force and muscle length change, but how these patterns change under different conditions in small animals is not well defined. Here, we report the first integrated in vivo force-length and activation patterns in rats, a commonly used small animal model, to evaluate the dynamics of two distal hindlimb muscles (medial gastrocnemius and plantaris) across a range of gait (walk, trot and gallop) and grade (level and incline) conditions. We use these data to explore how the pattern of force production, muscle activation and muscle length changes across conditions in a small quadrupedal mammal. As hypothesized, we found that the rat muscles show limited fascicle strains during active force generation in stance across gaits and grades, indicating that these distal rat muscles generate force economically but perform little work, similar to patterns observed in larger animals during level locomotion. Additionally, given differences in fiber type composition and variation in motor unit recruitment across the gait and grade conditions examined here for these muscles, the in vivo force-length behavior and neuromuscular activation data reported here can be used to validate improved two-element Hill-type muscle models.


Asunto(s)
Marcha , Miembro Posterior/fisiología , Músculo Esquelético/fisiología , Ratas/fisiología , Animales , Fenómenos Biomecánicos , Ambiente , Ratas Sprague-Dawley
9.
J Exp Biol ; 222(Pt 10)2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31085599

RESUMEN

Leg stiffness, commonly estimated as the 'compression' of a defined leg element in response to a load, has long been used to characterize terrestrial locomotion. This study investigated how goats adjust the stiffness of their hindlimbs to accommodate surfaces of different stiffness. Goats provide a compelling animal model for studying leg stiffness modulation, because they skillfully ambulate over a range of substrates that vary in compliance. To investigate the adjustments that goats make when walking over such substrates, ground reaction forces and three-dimensional trajectories of hindlimb markers were recorded as goats walked on rigid, rubber and foam surfaces. Net joint moments, power and work at the hip, knee, ankle and metatarsophalangeal joints were estimated throughout stance via inverse dynamics. Hindlimb stiffness was estimated from plots of total leg force versus total leg length, and individual joint stiffness was estimated from plots of joint moment versus joint angle. Our results support the hypothesis that goats modulate hindlimb stiffness in response to surface stiffness; specifically, hindlimb stiffness decreased on the more compliant surfaces (P<0.002). Estimates of joint stiffness identified hip and ankle muscles as the primary drivers of these adjustments. When humans run on compliant surfaces, they generally increase leg stiffness to preserve their center-of-mass mechanics. We did not estimate center-of-mass mechanics in this study; nevertheless, our estimates of hindlimb stiffness suggest that goats exhibit a different behavior. This study offers new insight into mechanisms that allow quadrupeds to modulate their gait mechanics when walking on surfaces of variable compliance.


Asunto(s)
Marcha , Cabras/fisiología , Miembro Posterior/fisiología , Animales , Fenómenos Biomecánicos , Ambiente , Femenino , Masculino , Distribución Aleatoria
10.
Nature ; 554(7691): 176-178, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32094546
11.
Nature ; 554(7691): 176-178, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29420503
12.
J Anat ; 232(3): 383-406, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29392730

RESUMEN

The musculoskeletal configuration of the mammalian pectoral limb has been heralded as a key anatomical feature leading to the adaptive radiation of mammals, but limb function in the non-mammaliaform cynodont outgroup remains unresolved. Conflicting reconstructions of abducted and adducted posture are based on mutually incompatible interpretations of ambiguous osteology. We reconstruct the pectoral limb of the Triassic non-mammaliaform cynodont Massetognathus pascuali in three dimensions, by combining skeletal morphology from micro-computed tomography with muscle anatomy from an extended extant phylogenetic bracket. Conservative tests of maximum range of motion suggest a degree of girdle mobility, as well as substantial freedom at the shoulder and the elbow joints. The glenoid fossa supports a neutral pose in which the distal end of the humerus points 45° posterolaterally from the body wall, intermediate between classically 'sprawling' and 'parasagittal' limb postures. Massetognathus pascuali is reconstructed as having a near-mammalian complement of shoulder muscles, including an incipient rotator cuff (m. subscapularis, m. infraspinatus, m. supraspinatus, and m. teres minor). Based on close inspection of the morphology of the glenoid fossa, we hypothesize a posture-driven scenario for the evolution of the therian ball-and-socket shoulder joint. The musculoskeletal reconstruction presented here provides the anatomical scaffolding for more detailed examination of locomotor evolution in the precursors to mammals.


Asunto(s)
Extremidad Superior/anatomía & histología , Vertebrados/anatomía & histología , Animales , Evolución Biológica , Fósiles , Filogenia , Microtomografía por Rayos X
13.
J Anat ; 232(1): 105-123, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29098684

RESUMEN

Several groups of birds have convergently evolved the ability to swim using their feet despite facing trade-offs with walking. However, swimming relative to terrestrial performance varies across these groups. Highly specialized divers, such as loons and grebes, excel at swimming underwater but struggle to stand on land, whereas species that primarily swim on the water surface, such as Mallards, retain the ability to move terrestrially. The identification of skeletal features associated with a swimming style and conserved across independent groups suggests that the hindlimb of foot-propelled swimming birds has adapted to suit the physical challenges of producing propulsive forces underwater. But in addition to skeletal features, how do hindlimb muscles reflect swimming ability and mode? This paper presents the first comparative myology analysis associated with foot-based swimming. Our detailed dissections of 35 specimens representing eight species reveal trends in hindlimb muscle size and attachment location across four independent lineages of extant swimming birds. We expand upon our dissections by compiling data from historical texts and provide a key to any outdated muscle nomenclature used in these sources. Our results show that highly diving birds tuck the femur and proximal tibiotarsus next to the ribcage and under the skin covering the abdomen, streamlining the body. Several hindlimb muscles exhibit dramatic anatomical variation in diving birds, including the flexor cruris lateralis (FCL) and iliofibularis (IF), which reduce in size and shift distally along the tibiotarsus. The femorotibialis medius (FTM) extends along an expanded cnemial crest. The resulting increased moment arms of these muscles likely help stabilize the hip and knee while paddling. Additionally, distal ankle plantarflexors, including the gastrocnemius and digital flexors, are exceptionally large in diving birds in order to power foot propulsion. These patterns exist within distantly related lineages of diving birds and, to a lesser extent, in surface swimmers. Together, our findings verify conserved muscular adaptations to a foot-propelled swimming lifestyle. The association of muscle anatomy with skeletal features and biomechanical movement demands can inform functional interpretation of fossil birds and reveal selective pressures underlying avian diversification.


Asunto(s)
Adaptación Fisiológica , Aves/anatomía & histología , Miembro Posterior/anatomía & histología , Músculo Esquelético/anatomía & histología , Natación , Animales , Pie/anatomía & histología
14.
J Exp Biol ; 221(Pt 19)2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30127080

RESUMEN

Loons (Gaviiformes) are arguably one of the most successful groups of swimming birds. As specialist foot-propelled swimmers, loons are capable of diving up to 70 m, remaining underwater for several minutes, and capturing fish. Despite the swimming prowess of loons, their undomesticated nature has prevented prior quantitative analysis. Our study used high-speed underwater cameras to film healthy common loons (Gavia immer) at the Tufts Wildlife Clinic in order to analyze their swimming and turning strategies. Loons swim by synchronously paddling their feet laterally at an average of 1.8 Hz. Combining flexion-extension of the ankle with rotation at the knee, loon swimming resembles grebe swimming and likely generates lift forces for propulsion. Loons modulate swimming speed by altering power stroke duration and use head bobbing to enhance underwater vision. We observed that loons execute tight but slow turns compared with other aquatic swimmers, potentially associated with hunting by flushing fish from refuges at short range. To execute turns, loons use several strategies. Loons increase the force produced on the outside of the turn by increasing the speed of the outboard foot, which also begins its power stroke before the inboard foot. During turns, loons bank their body away from the turn and alter the motion of the feet to maintain the turn. Our findings demonstrate that foot-propelled swimming has evolved convergently in loons and grebes, but divergently from cormorants. The swimming and turning strategies used by loons that allow them to capture fish could inspire robotic designs or novel paddling techniques.


Asunto(s)
Aves/fisiología , Pie/fisiología , Natación , Animales , Fenómenos Biomecánicos , Buceo , Movimiento , Fotograbar/veterinaria
15.
Proc Natl Acad Sci U S A ; 112(11): 3392-6, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733863

RESUMEN

Individuals traversing challenging obstacles are faced with a decision: they can adopt traversal strategies that minimally disrupt their normal locomotion patterns or they can adopt strategies that substantially alter their gait, conferring new advantages and disadvantages. We flew pigeons (Columba livia) through an array of vertical obstacles in a flight arena, presenting them with this choice. The pigeons selected either a strategy involving only a slight pause in the normal wing beat cycle, or a wings-folded posture granting reduced efficiency but greater stability should a misjudgment lead to collision. The more stable but less efficient flight strategy was not used to traverse easy obstacles with wide gaps for passage but came to dominate the postures used as obstacle challenge increased with narrower gaps and there was a greater chance of a collision. These results indicate that birds weigh potential obstacle negotiation strategies and estimate task difficulty during locomotor pattern selection.


Asunto(s)
Columbidae/fisiología , Vuelo Animal/fisiología , Animales , Fenómenos Biomecánicos , Postura/fisiología , Factores de Tiempo , Alas de Animales/fisiología
16.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28835559

RESUMEN

Digit reduction is a major trend that characterizes horse evolution, but its causes and consequences have rarely been quantitatively tested. Using beam analysis on fossilized centre metapodials, we tested how locomotor bone stresses changed with digit reduction and increasing body size across the horse lineage. Internal bone geometry was captured from 13 fossil horse genera that covered the breadth of the equid phylogeny and the spectrum of digit reduction and body sizes, from Hyracotherium to Equus To account for the load-bearing role of side digits, a novel, continuous measure of digit reduction was also established-toe reduction index (TRI). Our results show that without accounting for side digits, three-toed horses as late as Parahippus would have experienced physiologically untenable bone stresses. Conversely, when side digits are modelled as load-bearing, species at the base of the horse radiation through Equus probably maintained a similar safety factor to fracture stress. We conclude that the centre metapodial compensated for evolutionary digit reduction and body mass increases by becoming more resistant to bending through substantial positive allometry in internal geometry. These results lend support to two historical hypotheses: that increasing body mass selected for a single, robust metapodial rather than several smaller ones; and that, as horse limbs became elongated, the cost of inertia from the side toes outweighed their utility for stabilization or load-bearing.


Asunto(s)
Evolución Biológica , Equidae/anatomía & histología , Extremidades , Fósiles , Animales , Tamaño Corporal , Equidae/clasificación , Filogenia , Soporte de Peso
18.
J Anat ; 231(6): 921-930, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29034479

RESUMEN

Bipedal hopping is used by macropods, including rat-kangaroos, wallabies and kangaroos (superfamily Macropodoidea). Interspecific scaling of the ankle extensor muscle-tendon units in the lower hindlimbs of these hopping bipeds shows that peak tendon stress increases disproportionately with body size. Consequently, large kangaroos store and recover more strain energy in their tendons, making hopping more efficient, but their tendons are at greater risk of rupture. This is the first intraspecific scaling analysis on the functional morphology of the ankle extensor muscle-tendon units (gastrocnemius, plantaris and flexor digitorum longus) in one of the largest extant species of hopping mammal, the western grey kangaroo Macropus fuliginosus (5.8-70.5 kg post-pouch body mass). The effective mechanical advantage of the ankle extensors does not vary with post-pouch body mass, scaling with an exponent not significantly different from 0.0. Therefore, larger kangaroos balance rotational moments around the ankle by generating muscle forces proportional to weight-related gravitational forces. Maximum force is dependent upon the physiological cross-sectional area of the muscle, which we found scales geometrically with a mean exponent of only 0.67, rather than 1.0. Therefore, larger kangaroos are limited in their capacity to oppose large external forces around the ankle, potentially compromising fast or accelerative hopping. The strain energy return capacity of the ankle extensor tendons increases with a mean exponent of ~1.0, which is much shallower than the exponent derived from interspecific analyses of hopping mammals (~1.4-1.9). Tendon safety factor (ratio of rupture stress to estimated peak hopping stress) is lowest in the gastrocnemius (< 2), and it decreases with body mass with an exponent of -0.15, extrapolating to a predicted rupture at 160 kg. Extinct giant kangaroos weighing 250 kg could therefore not have engaged in fast hopping using 'scaled-up' lower hindlimb morphology of extant western grey kangaroos.


Asunto(s)
Articulación del Tobillo/fisiología , Locomoción/fisiología , Macropodidae/fisiología , Músculo Esquelético/fisiología , Tendones/fisiología , Animales , Articulación del Tobillo/anatomía & histología , Fenómenos Biomecánicos , Macropodidae/anatomía & histología , Músculo Esquelético/anatomía & histología , Tendones/anatomía & histología
19.
Front Zool ; 14: 37, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28747987

RESUMEN

BACKGROUND: Birds have highly mobile necks, but neither the details of how they realize complex poses nor the evolution of this complex musculoskeletal system is well-understood. Most previous work on avian neck function has focused on dorsoventral flexion, with few studies quantifying lateroflexion or axial rotation. Such data are critical for understanding joint function, as musculoskeletal movements incorporate motion around multiple degrees of freedom simultaneously. Here we use biplanar X-rays on wild turkeys to quantify three-dimensional cervical joint range of motion in an avian neck to determine patterns of mobility along the cranial-caudal axis. RESULTS: Range of motion can be generalized to a three-region model: cranial joints are ventroflexed with high axial and lateral mobility, caudal joints are dorsiflexed with little axial rotation but high lateroflexion, and middle joints show varying amounts axial rotation and a low degree of lateroflexion. Nonetheless, variation within and between regions is high. To attain complex poses, substantial axial rotation can occur at joints caudal to the atlas/axis complex and zygapophyseal joints can reduce their overlap almost to osteological disarticulation. Degrees of freedom interact at cervical joints; maximum lateroflexion occurs at different dorsoventral flexion angles at different joints, and axial rotation and lateroflexion are strongly coupled. Further, patterns of joint mobility are strongly predicted by cervical morphology. CONCLUSION: Birds attain complex neck poses through a combination of mobile intervertebral joints, coupled rotations, and highly flexible zygapophyseal joints. Cranial-caudal patterns of joint mobility are tightly linked to cervical morphology, such that function can be predicted by form. The technique employed here provides a repeatable protocol for studying neck function in a broad array of taxa that will be directly comparable. It also serves as a foundation for future work on the evolution of neck mobility along the line from non-avian theropod dinosaurs to birds.

20.
Front Zool ; 14: 32, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680452

RESUMEN

BACKGROUND: Numerous historical descriptions of the Lesser Egyptian jerboa, Jaculus jaculus, a small bipedal mammal with elongate hindlimbs, make special note of their extraordinary leaping ability. We observed jerboa locomotion in a laboratory setting and performed inverse dynamics analysis to understand how this small rodent generates such impressive leaps. We combined kinematic data from video, kinetic data from a force platform, and morphometric data from dissections to calculate the relative contributions of each hindlimb muscle and tendon to the total movement. RESULTS: Jerboas leapt in excess of 10 times their hip height. At the maximum recorded leap height (not the maximum observed leap height), peak moments for metatarso-phalangeal, ankle, knee, and hip joints were 13.1, 58.4, 65.1, and 66.9 Nmm, respectively. Muscles acting at the ankle joint contributed the most work (mean 231.6 mJ / kg Body Mass) to produce the energy of vertical leaping, while muscles acting at the metatarso-phalangeal joint produced the most stress (peak 317.1 kPa). The plantaris, digital flexors, and gastrocnemius tendons encountered peak stresses of 25.6, 19.1, and 6.0 MPa, respectively, transmitting the forces of their corresponding muscles (peak force 3.3, 2.0, and 3.8 N, respectively). Notably, we found that the mean elastic energy recovered in the primary tendons of both hindlimbs comprised on average only 4.4% of the energy of the associated leap. CONCLUSIONS: The limited use of tendon elastic energy storage in the jerboa parallels the morphologically similar heteromyid kangaroo rat, Dipodomys spectabilis. When compared to larger saltatory kangaroos and wallabies that sustain hopping over longer periods of time, these small saltatory rodents store and recover less elastic strain energy in their tendons. The large contribution of muscle work, rather than elastic strain energy, to the vertical leap suggests that the fitness benefit of rapid acceleration for predator avoidance dominated over the need to enhance locomotor economy in the evolutionary history of jerboas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA