Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 227(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38018408

RESUMEN

The most effective way to avoid intense inter- and intra-specific competition at the dung source, and to increase the distance to the other competitors, is to follow a single straight bearing. While ball-rolling dung beetles manage to roll their dung balls along nearly perfect straight paths when traversing flat terrain, the paths that they take when traversing more complex (natural) terrain are not well understood. In this study, we investigate the effect of complex surface topographies on the ball-rolling ability of Kheper lamarcki. Our results reveal that ball-rolling trajectories are strongly influenced by the characteristic scale of the surface structure. Surfaces with an increasing similarity between the average distance of elevations and the ball radius cause progressively more difficulties during ball transportation. The most important factor causing difficulties in ball transportation appears to be the slope of the substrate. Our results show that, on surfaces with a slope of 7.5 deg, more than 60% of the dung beetles lose control of their ball. Although dung beetles still successfully roll their dung ball against the slope on such inclinations, their ability to roll the dung ball sideways diminishes. However, dung beetles do not seem to adapt their path on inclines such that they roll their ball in the direction against the slope. We conclude that dung beetles strive for a straight trajectory away from the dung pile, and that their actual path is the result of adaptations to particular surface topographies.


Asunto(s)
Conducta Animal , Escarabajos , Animales , Señales (Psicología) , Heces , Extremidad Superior
2.
IEEE Trans Cybern ; 54(4): 2062-2075, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37028343

RESUMEN

Dung beetles can effectively transport dung pallets of various sizes in any direction across uneven terrain. While this impressive ability can inspire new locomotion and object transportation solutions in multilegged (insect-like) robots, to date, most existing robots use their legs primarily to perform locomotion. Only a few robots can use their legs to achieve both locomotion and object transportation, although they are limited to specific object types/sizes (10%-65% of leg length) on flat terrain. Accordingly, we proposed a novel integrated neural control approach that, like dung beetles, pushes state-of-the-art insect-like robots beyond their current limits toward versatile locomotion and object transportation with different object types/sizes and terrains (flat and uneven). The control method is synthesized based on modular neural mechanisms, integrating central pattern generator (CPG)-based control, adaptive local leg control, descending modulation control, and object manipulation control. We also introduced an object transportation strategy combining walking and periodic hind leg lifting for soft object transportation. We validated our method on a dung beetle-like robot. Our results show that the robot can perform versatile locomotion and use its legs to transport hard and soft objects of various sizes (60%-70% of leg length) and weights (approximately 3%-115% of robot weight) on flat and uneven terrains. The study also suggests possible neural control mechanisms underlying the dung beetle Scarabaeus galenus' versatile locomotion and small dung pallet transportation.


Asunto(s)
Escarabajos , Robótica , Animales , Robótica/métodos , Locomoción , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA