Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 37(33): 8003-8013, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28729438

RESUMEN

It is widely accepted that cortical neurons are similarly more activated during waking and paradoxical sleep (PS; aka REM) than during slow-wave sleep (SWS). However, we recently reported using Fos labeling that only a few limbic cortical structures including the retrosplenial cortex (RSC) and anterior cingulate cortex (ACA) contain a large number of neurons activated during PS hypersomnia. Our aim in the present study was to record local field potentials and unit activity from these two structures across all vigilance states in freely moving male rats to determine whether the RSC and the ACA are electrophysiologically specifically active during basal PS episodes. We found that theta power was significantly higher during PS than during active waking (aWK) similarly in the RSC and hippocampus (HPC) but not in ACA. Phase-amplitude coupling between HPC theta and gamma oscillations strongly and specifically increased in RSC during PS compared with aWK. It did not occur in ACA. Further, 68% and 43% of the units recorded in the RSC and ACA were significantly more active during PS than during aWK and SWS, respectively. In addition, neuronal discharge of RSC but not of ACA neurons increased just after the peak of hippocampal theta wave. Our results show for the first time that RSC neurons display enhanced spiking in synchrony with theta specifically during PS. We propose that activation of RSC neurons specifically during PS may play a role in the offline consolidation of spatial memories, and in the generation of vivid perceptual scenery during dreaming.SIGNIFICANCE STATEMENT Fifty years ago, Michel Jouvet used the term paradoxical to define REM sleep because of the simultaneous occurrence of a cortical activation similar to waking accompanied by muscle atonia. However, we recently demonstrated using functional neuroanatomy that only a few limbic structures including the retrosplenial cortex (RSC) and anterior cingulate cortex (ACA) are activated during PS. In the present study, we show for the first time that the RSC and ACA contain neurons firing more during PS than in any other state. Further, RSC neurons are firing in phase with the hippocampal theta rhythm. These data indicate that the RSC is very active during PS and could play a key role in memory consolidation taking place during this state.


Asunto(s)
Corteza Cerebral/fisiología , Giro del Cíngulo/fisiología , Hipocampo/fisiología , Sueño REM/fisiología , Ritmo Teta/fisiología , Animales , Fenómenos Electrofisiológicos/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
2.
Sci Rep ; 11(1): 13078, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158548

RESUMEN

Hippocampal (HPC) theta oscillation during post-training rapid eye movement (REM) sleep supports spatial learning. Theta also modulates neuronal and oscillatory activity in the retrosplenial cortex (RSC) during REM sleep. To investigate the relevance of theta-driven interaction between these two regions to memory consolidation, we computed the Granger causality within theta range on electrophysiological data recorded in freely behaving rats during REM sleep, both before and after contextual fear conditioning. We found a training-induced modulation of causality between HPC and RSC that was correlated with memory retrieval 24 h later. Retrieval was proportional to the change in the relative influence RSC exerted upon HPC theta oscillation. Importantly, causality peaked during theta acceleration, in synchrony with phasic REM sleep. Altogether, these results support a role for phasic REM sleep in hippocampo-cortical memory consolidation and suggest that causality modulation between RSC and HPC during REM sleep plays a functional role in that phenomenon.


Asunto(s)
Giro del Cíngulo/fisiología , Consolidación de la Memoria/fisiología , Sueño REM/fisiología , Animales , Hipocampo/fisiología , Masculino , Memoria/fisiología , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Sueño/fisiología , Ritmo Teta/fisiología , Vigilia/fisiología
3.
Brain Struct Funct ; 225(9): 2643-2668, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32970253

RESUMEN

Several studies suggest that neurons from the lateral region of the SuM (SuML) innervating the dorsal dentate gyrus (DG) display a dual GABAergic and glutamatergic transmission and are specifically activated during paradoxical (REM) sleep (PS). The objective of the present study is to characterize the anatomical, neurochemical and electrophysiological properties of the SuML-DG projection neurons and to determine how they control DG oscillations and neuronal activation during PS and other vigilance states. For this purpose, we combine structural connectivity techniques using neurotropic viral vectors (rabies virus, AAV), neurochemical anatomy (immunohistochemistry, in situ hybridization) and imaging (light, electron and confocal microscopy) with in vitro (patch clamp) and in vivo (LFP, EEG) optogenetic and electrophysiological recordings performed in transgenic VGLUT2-cre male mice. At the cellular level, we show that the SuML-DG neurons co-release GABA and glutamate on dentate granule cells and increase the activity of a subset of DG granule cells. At the network level, we show that activation of the SuML-DG pathway increases theta power and frequency during PS as well as gamma power during PS and waking in the DG. At the behavioral level, we show that the activation of this pathway does not change animal behavior during PS, induces awakening during slow wave sleep and increases motor activity during waking. These results suggest that the SuML-DG pathway is capable of supporting the increase of theta and gamma power in the DG observed during PS and plays an important modulatory role of DG network activity during this state.


Asunto(s)
Giro Dentado/fisiología , Neuronas GABAérgicas/fisiología , Rayos gamma , Ácido Glutámico/fisiología , Hipotálamo Posterior/fisiología , Neuronas/fisiología , Sueño REM/fisiología , Ritmo Teta , Animales , Giro Dentado/citología , Neuronas GABAérgicas/citología , Hipotálamo Posterior/citología , Masculino , Potenciales de la Membrana , Ratones Transgénicos , Neuronas/citología
4.
Curr Opin Neurobiol ; 44: 59-64, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28347885

RESUMEN

We review here classical and recent knowledge on the state of the cortex during paradoxical (REM) sleep (PS). Recent data indicate that only a few limbic cortical structures including the anterior cingulate, retrosplenial and medial entorhinal cortices and the dentate gyrus are strongly activated during PS. In contrast, most of the other cortices including the somatosensory ones are rather deactivated during PS. Further, recent results suggest that tonic activation of limbic cortical neurons during PS is due to projections from glutamate neurons of the claustrum and GABA/glutamate neurons of the supramammillary nucleus while their pacing with theta is induced by projections from GABAergic neurons of the medial septum. The limbic structures activated during PS have all been implicated in spatial memory and it is therefore likely that such activation is crucial for memory consolidation.


Asunto(s)
Ganglios Basales/fisiología , Hipotálamo Posterior/fisiología , Sueño REM/fisiología , Corteza Entorrinal/fisiología , Humanos , Consolidación de la Memoria/fisiología , Neuronas/metabolismo
5.
Brain Struct Funct ; 222(3): 1495-1507, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27539452

RESUMEN

We recently demonstrated that granule cells located in the dorsal dentate gyrus (dDG) are activated by neurons located in the lateral supramammillary nucleus (SumL) during paradoxical sleep (PS) hypersomnia. To determine whether these neurons are glutamatergic and/or GABAergic, we combined FOS immunostaining with in situ hybridization of vesicular glutamate transporter 2 (vGLUT2, a marker of glutamatergic neurons) or that of the vesicular GABA transporter (vGAT, a marker of GABAergic neurons) mRNA in rats displaying PS hypersomnia (PSR). We found that 84 and 76 % of the FOS+ SumL neurons in PSR rats expressed vGLUT2 and vGAT mRNA, respectively. Then, we examined vGLUT2 and FOS immunostaining in the dorsal and ventral DG of PSR rats with a neurochemical lesion of the Sum. In PSR-lesioned animals but not in sham animals, nearly all vGLUT2+ fibers and FOS+ neurons disappeared in the dDG, but not in the ventral DG (vDG). To identify the pathway (s) responsible (s) for the activation of the vDG during PS hypersomnia, we combined Fluorogold (FG) injection in the vDG of PSR rats with FOS staining. We found a large number of neurons FOS-FG+, specifically in the medial entorhinal cortex (ENTm). Altogether, our results suggest that SumL neurons with a unique dual glutamatergic and GABAergic phenotype are responsible for the activation of the dDG during PS hypersomnia, while vDG granule neurons are activated by ENTm cortical neurons. These results suggest differential mechanisms and functions for the activation of the dDG and the vDG granule cells during PS.


Asunto(s)
Giro Dentado/citología , Neuronas/fisiología , Sueño REM/fisiología , Animales , Recuento de Células , Giro Dentado/lesiones , Electroencefalografía , Electromiografía , Hipotálamo Posterior/citología , Masculino , Proteínas Oncogénicas v-fos/genética , Proteínas Oncogénicas v-fos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Sprague-Dawley , Privación de Sueño , Estadísticas no Paramétricas , Estilbamidinas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Vigilia
6.
Sci Adv ; 1(3): e1400177, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26601158

RESUMEN

Evidence in humans suggests that limbic cortices are more active during rapid eye movement (REM or paradoxical) sleep than during waking, a phenomenon fitting with the presence of vivid dreaming during this state. In that context, it seemed essential to determine which populations of cortical neurons are activated during REM sleep. Our aim in the present study is to fill this gap by combining gene expression analysis, functional neuroanatomy, and neurochemical lesions in rats. We find in rats that, during REM sleep hypersomnia compared to control and REM sleep deprivation, the dentate gyrus, claustrum, cortical amygdaloid nucleus, and medial entorhinal and retrosplenial cortices are the only cortical structures containing neurons with an increased expression of Bdnf, FOS, and ARC, known markers of activation and/or synaptic plasticity. Further, the dentate gyrus is the only cortical structure containing more FOS-labeled neurons during REM sleep hypersomnia than during waking. Combining FOS staining, retrograde labeling, and neurochemical lesion, we then provide evidence that FOS overexpression occurring in the cortex during REM sleep hypersomnia is due to projections from the supramammillary nucleus and the claustrum. Our results strongly suggest that only a subset of cortical and hippocampal neurons are activated and display plasticity during REM sleep by means of ascending projections from the claustrum and the supramammillary nucleus. Our results pave the way for future studies to identify the function of REM sleep with regard to dreaming and emotional memory processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA