RESUMEN
Myeloid leukemia factor 1 (Mlf1) was identified as a proto-oncoprotein that affects hematopoietic differentiation in humans. However, its cellular function remains elusive, spanning roles from cell cycle regulation to modulation of protein aggregate formation and participation in ciliogenesis. Given that structurally conserved homologs of Mlf1 can be found across the eukaryotic tree of life, we decided to characterize its cellular role underlying this phenotypic pleiotropy. Using a model of the unicellular eukaryote Giardia intestinalis, we demonstrate that its Mlf1 homolog (GiMlf) mainly localizes to two types of cytosolic foci: microtubular structures, where it interacts with Hsp40, and ubiquitin-rich, membraneless compartments, found adjacent to mitochondrion-related organelles known as mitosomes, containing the 26S proteasome regulatory subunit 4. Upon cellular stress, GiMlf either relocates to the affected compartment or disperses across the cytoplasm, subsequently accumulating into enlarged foci during the recovery phase. In vitro assays suggest that GiMlf can be recruited to membranes through its affinity for signaling phospholipids. Importantly, cytosolic foci diminish in the gimlf knockout strain, which exhibits extensive proteomic changes indicative of compromised proteostasis. Consistent with data from other cellular systems, we propose that Mlf acts in the response to proteotoxic stress by mediating the formation of function-specific foci for protein folding and degradation.
RESUMEN
This study demonstrates the use of nanoparticles prepared by a gas aggregation source for fabricating structures by combining laser sintering and ablation. At first, the morphology and optical properties of prepared nanoparticle coatings were characterized. Then, the response of coatings to laser irradiation at different powers or exposure times was studied by in situ time-of-flight mass spectrometry, followed by scanning electron microscopy measurements of the resulting structures. By comparing the numbers of detected Ag ions, that were ablated and desorbed, with changes in morphology after irradiation, the optimum conditions for laser sintering and ablation of Ag nanoparticle coatings were found. As a proof of concept we fabricated micromirrors from sintered metal, microwires from both sintered metal and interconnected nanoparticles, and arbitrary metallic bulky or nanoparticle patterns. Vacuum compatibility and the possibility of fabrication of both metallic and nanoparticle structures in one step predetermines applications of developed method in electronics or sensing.
RESUMEN
The mitochondrion is crucial for ATP generation by oxidative phosphorylation, among other processes. Cristae are invaginations of the mitochondrial inner membrane that house nearly all the macromolecular complexes that perform oxidative phosphorylation. The unicellular parasite Trypanosoma brucei undergoes during its life cycle extensive remodeling of its single mitochondrion, which reflects major changes in its energy metabolism. While the bloodstream form (BSF) generates ATP exclusively by substrate-level phosphorylation and has a morphologically highly reduced mitochondrion, the insect-dwelling procyclic form (PCF) performs oxidative phosphorylation and has an expanded and reticulated organelle. Here, we have performed high-resolution 3D reconstruction of BSF and PCF mitochondria, with a particular focus on their cristae. By measuring the volumes and surface areas of these structures in complete or nearly complete cells, we have found that mitochondrial cristae are more prominent in BSF than previously thought and their biogenesis seems to be maintained during the cell cycle. Furthermore, PCF cristae exhibit a surprising range of volumes in situ, implying that each crista is acting as an independent bioenergetic unit. Cristae appear to be particularly enriched in the region of the organelle between the nucleus and kinetoplast, the mitochondrial genome, suggesting this part has distinctive properties.
Asunto(s)
Trypanosoma brucei brucei , Animales , Ciclo Celular , Núcleo Celular , Estadios del Ciclo de Vida , MitocondriasRESUMEN
BACKGROUND: The recent Zika virus (ZIKV) outbreak has linked ZIKV with microcephaly and other central nervous system pathologies in humans. Astrocytes are among the first cells to respond to ZIKV infection in the brain and are also targets for virus infection. In this study, we investigated the interaction between ZIKV and primary human brain cortical astrocytes (HBCA). RESULTS: HBCAs were highly sensitive to representatives of both Asian and African ZIKV lineages and produced high viral yields. The infection was associated with limited immune cytokine/chemokine response activation; the highest increase of expression, following infection, was seen in CXCL-10 (IP-10), interleukin-6, 8, 12, and CCL5 (RANTES). Ultrastructural changes in the ZIKV-infected HBCA were characterized by electron tomography (ET). ET reconstructions elucidated high-resolution 3D images of the proliferating and extensively rearranged endoplasmic reticulum (ER) containing viral particles and virus-induced vesicles, tightly juxtaposed to collapsed ER cisternae. CONCLUSIONS: The results confirm that human astrocytes are sensitive to ZIKV infection and could be a source of proinflammatory cytokines in the ZIKV-infected brain tissue.
Asunto(s)
Astrocitos/virología , Retículo Endoplásmico/virología , Infección por el Virus Zika/virología , Virus Zika/patogenicidad , Encéfalo/virología , Células Cultivadas , Citocinas/metabolismo , HumanosRESUMEN
Spermatozoon formation in Caryophyllaeides fennica (Schneider, 1902) is characterised by the following: (1) apical electron-dense material in the zone of differentiation, (2) typical striated roots situated unconventionally in opposite directions in early stages of spermiogenesis, (3) intercentriolar body composed of three electron-dense and two electron-lucent plates, (4) free flagellum and a flagellar bud that correspond to a greatly reduced flagellum and (5) rotation of free flagellum and a flagellar bud to the median cytoplasmic process at 90°. The development of two flagella of significantly unequal length clearly supports a derived form of spermiogenesis in the Caryophyllidea. New for cestodes is a finding of two additional striated roots situated opposite each other, in conjunction with both the flagellar bud and free flagellum. Mutual position of additional striated roots and typical striated roots is parallel in early stages and perpendicular in advanced stages of spermiogenesis. A complete proximodistal fusion gives rise to a mature spermatozoon consisting of one axoneme, parallel cortical microtubules, a nucleus and a moderately electron-dense cytoplasm with glycogen particles, detected by a technique of Thiéry (J Microsc 6:987-1018, 1967), in the principal regions (II, III, IV). Electron tomography analysis of the free flagellum and one axoneme of a mature spermatozoon of C. fennica provides clear evidence, for the first time, that two tubular structures are present in the central axonemal electron-dense core. Phylogenetically important aspects of spermiogenesis of the Caryophyllidea with one axoneme, and other cestodes with one or two axonemes, are briefly reviewed and discussed.
Asunto(s)
Axonema/ultraestructura , Cestodos/ultraestructura , Flagelos/ultraestructura , Espermatogénesis/fisiología , Espermatozoides/ultraestructura , Animales , Núcleo Celular/ultraestructura , Infecciones por Cestodos , Tomografía con Microscopio Electrónico , Masculino , Microscopía Electrónica de Transmisión , Microtúbulos/ultraestructuraRESUMEN
Iridescent (IVs, family Iridoviridae, genus Iridovirus) and cytoplasmic polyhedrosis viruses (CPVs; family Reoviridae, genus Cypovirus) are well known in insects, with thirteen IV species recognized from various orders, and sixteen CPV species known from lepidopterans. In 1975, an IV and CPV were reported in the daphnid, Simocehpalus expinosus, in Florida, but other reported daphnid virus infections seem to be rare. Here we report infected daphnids from woodland and carp ponds in the Czech Republic, Daphnia curvirostris with an IV, and D. pulex and D. ambigua, with CPVs. This suggests these viruses are more common in daphnids, the rarity of reports due to few surveys.
Asunto(s)
Daphnia/virología , Virosis/veterinaria , Animales , República Checa , Iridovirus , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , ReoviridaeRESUMEN
Spermiogenesis and the spermatozoon ultrastructure of the cestode Nippotaenia mogurndae Yamaguti et Myiata, 1940 (Nippotaeniidea), a parasite of Perccottus glenii Dubowski, 1877 (Perciformes: Odontobutidae), have been investigated by means of transmission electron microscopy, cytochemical staining with periodic acid-thiosemicarbazide-silver proteinate (PA-TSC-SP) for glycogen, and electron tomography. The process of spermatozoon formation is characterised by the presence of (1) two centrioles without typical striated rootlets, (2) a single intercentriolar body, (3) a flagellar rotation (free flagellum plus flagellar bud), and (4) a complete proximodistal fusion. The mature spermatozoon of N. mogurndae contains a single helicoidal crested body, one axoneme of the 9 + "1" trepaxonematan structure, parallel cortical microtubules arranged in a ring in the anterior region of the cell, and a spiraled nucleus encircling the axoneme. Intracellular components are situated in a moderately electron-dense cytoplasm, containing glycogen in the principal regions (II, III, IV) of the spermatozoon. Application of electron tomography has revealed a helicoidal nature of the central electron-dense core in the central cylinder of the axoneme in parasitic cestodes for the first time. The patterns of spermiogenesis and spermatozoon ultrastructure resemble most closely those in mesocestoidids and may reflect the relationships between Nippotaeniidea and Mesocestoididae.
Asunto(s)
Cestodos/ultraestructura , Infecciones por Cestodos/veterinaria , Enfermedades de los Peces/parasitología , Espermatogénesis , Espermatozoides/ultraestructura , Animales , Núcleo Celular/ultraestructura , Cestodos/crecimiento & desarrollo , Infecciones por Cestodos/parasitología , Tomografía con Microscopio Electrónico , Peces , Masculino , Microscopía Electrónica de Transmisión , Espermatozoides/crecimiento & desarrolloRESUMEN
Tick-borne encephalitis (TBE), a disease caused by tick-borne encephalitis virus (TBEV), represents the most important flaviviral neural infection in Europe and north-eastern Asia. In the central nervous system (CNS), neurons are the primary target for TBEV infection; however, infection of non-neuronal CNS cells, such as astrocytes, is not well understood. In this study, we investigated the interaction between TBEV and primary human astrocytes. We report for the first time, to the best of our knowledge, that primary human astrocytes are sensitive to TBEV infection, although the infection did not affect their viability. The infection induced a marked increase in the expression of glial fibrillary acidic protein, a marker of astrocyte activation. In addition, expression of matrix metalloproteinase 9 and several key pro-inflammatory cytokines/chemokines (e.g. tumour necrosis factor α, interferon α, interleukin (IL)-1ß, IL-6, IL-8, interferon γ-induced protein 10, macrophage inflammatory protein, but not monocyte chemotactic protein 1) was upregulated. Moreover, we present a detailed description of morphological changes in TBEV-infected cells, as investigated using three-dimensional electron tomography. Several novel ultrastructural changes were observed, including the formation of unique tubule-like structures of 17.9 ±0.15 nm diameter with associated viral particles and/or virus-induced vesicles and located in the rough endoplasmic reticulum of the TBEV-infected cells. This is the first demonstration that TBEV infection activates primary human astrocytes. The infected astrocytes might be a potential source of pro-inflammatory cytokines in the TBEV-infected brain, and might contribute to the TBEV-induced neurotoxicity and blood-brain barrier breakdown that occurs during TBE. The neuropathological significance of our observations is also discussed.
Asunto(s)
Astrocitos/virología , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Encefalitis Transmitida por Garrapatas/patología , Astrocitos/patología , Astrocitos/fisiología , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/etiología , Encefalitis Transmitida por Garrapatas/fisiopatología , Retículo Endoplásmico Rugoso/patología , Proteína Ácida Fibrilar de la Glía/biosíntesis , Interacciones Huésped-Patógeno , Humanos , Imagenología Tridimensional , Metaloproteinasa 9 de la Matriz/biosíntesis , Microscopía Electrónica de Transmisión , Regulación hacia Arriba , Replicación ViralRESUMEN
We present a powerful method for the simultaneous detection of Au nanoparticles located on both sides of ultrathin sections. The method employs a high-resolution scanning electron microscope (HRSEM) operating in scanning transmission electron microscopy (STEM) mode in combination with the detection of backscattered electrons (BSE). The images are recorded simultaneously during STEM and BSE imaging at the precisely selected accelerating voltage. Under proper imaging conditions, the positions of Au nanoparticles on the top or bottom sides can be clearly differentiated, hence showing this method to be suitable for multiple immunolabelling using Au nanoparticles (NPs) as markers. The difference between the upper and lower Au NPs is so large that it is possible to apply common software tools (such as ImageJ) to enable their automatic differentiation. The effects of the section thickness, detector settings and accelerating voltage on the resulting image are shown. Our experimental results correspond to the results modelled in silico by Monte Carlo (MC) simulations.
RESUMEN
During their long evolution, anoxygenic phototrophic bacteria have inhabited a wide variety of natural habitats and developed specific strategies to cope with the challenges of any particular environment. Expression, assembly, and safe operation of the photosynthetic apparatus must be regulated to prevent reactive oxygen species generation under illumination in the presence of oxygen. Here, we report on the photoheterotrophic Sediminicoccus sp. strain KRV36, which was isolated from a cold stream in north-western Iceland, 30 km south of the Arctic Circle. In contrast to most aerobic anoxygenic phototrophs, which stop pigment synthesis when illuminated, strain KRV36 maintained its bacteriochlorophyll synthesis even under continuous light. Its cells also contained between 100 and 180 chromatophores, each accommodating photosynthetic complexes that exhibit an unusually large carotenoid absorption spectrum. The expression of photosynthesis genes in dark-adapted cells was transiently downregulated in the first 2 hours exposed to light but recovered to the initial level within 24 hours. An excess of membrane-bound carotenoids as well as high, constitutive expression of oxidative stress response genes provided the required potential for scavenging reactive oxygen species, safeguarding bacteriochlorophyll synthesis and photosystem assembly. The unique cellular architecture and an unusual gene expression pattern represent a specific adaptation that allows the maintenance of anoxygenic phototrophy under arctic conditions characterized by long summer days with relatively low irradiance.IMPORTANCEThe photoheterotrophic bacterium Sediminicoccus sp. KRV36 was isolated from a cold stream in Iceland. It expresses its photosynthesis genes, synthesizes bacteriochlorophyll, and assembles functional photosynthetic complexes under continuous light in the presence of oxygen. Unraveling the molecular basis of this ability, which is exceptional among aerobic anoxygenic phototrophic species, will help to understand the evolution of bacterial photosynthesis in response to changing environmental conditions. It might also open new possibilities for genetic engineering of biotechnologically relevant phototrophs, with the aim of increasing photosynthetic activity and their tolerance to reactive oxygen species.
Asunto(s)
Bacterioclorofilas , Proteínas del Complejo del Centro de Reacción Fotosintética , Bacterioclorofilas/metabolismo , Especies Reactivas de Oxígeno , Islandia , Fotosíntesis/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Bacterias/metabolismo , Oxígeno/metabolismoRESUMEN
The neutron spectrum was measured at two locations in the spent fuel storage facility of the Temelín nuclear power plant. The measurement had two primary objectives: to map the neutron -γ field by quantifying the ambient dose equivalent H∗(10) and to identify methods that could improve the quality of the adjusted neutron spectrum using a Bonner Sphere Spectrometer (BSS). Three spectrometers were used: a BSS and two proton recoil spectrometers. Hydrogen-filled proportional counters and an EJ309 scintillator were used to construct the a priori spectrum for BSS adjustment. The details of this process and its results are discussed. The a posteriori spectrum was used to calculate the ambient dose equivalent H∗(10). The resulting spectrum is highly thermalised, but the predominant contribution to H∗(10) was in the 100 keV-1.3 MeV range. The use of hydrogen-proportional counters in combination with the BSS is recommended.
RESUMEN
Tick-borne encephalitis virus (TBEV) is a neurotropic orthoflavivirus responsible for severe infections of the central nervous system. Although neurons are predominantly targeted, specific involvement of microglia in pathogenesis of TBE is not yet fully understood. In this study, the susceptibility of human microglia to TBEV is investigated, focusing on productive infection and different immune responses of different viral strains. We investigated primary human microglia and two immortalized microglial cell lines exposed to three TBEV strains (Hypr, Neudörfl and 280), each differing in virulence. Our results show that all microglia cultures tested support long-term productive infections, regardless of the viral strain. In particular, immune response varied significantly with the viral strain, as shown by the differential secretion of cytokines and chemokines such as IP-10, MCP-1, IL-8 and IL-6, quantified using a Luminex 48-plex assay. The most virulent strain triggered the highest cytokine induction. Electron tomography revealed substantial ultrastructural changes in the infected microglia, despite the absence of cytopathic effects. These findings underscore the susceptibility of human microglia to TBEV and reveal strain-dependent variations in viral replication and immune responses, highlighting the complex role of microglia in TBEV-induced neuropathology and contribute to a deeper understanding of TBE pathogenesis and neuroinflammation.
RESUMEN
Delayed neutron counting is often used to verify the characteristics of nuclear material. Use of portable neutron generators in high frequency pulsing mode enables effective analysis with higher counting efficiency and lower radiation protection demands. The paper deals with delayed neutron counting of uranium pins with P385 portable DD neutron generator in polyethylene-based setup. Counting is performed in high frequency mode of neutron generator. The viability of such measurement in the frequency range from 100 Hz to 250 Hz was demonstrated and optimal pulsing parameters for P385 neutron generator were found. Delayed neutron counting was then performed for two types of uranium rods. Delayed neutrons were counted both inbetween neutron pulses during neutron generation and once the emission of neutrons stopped. The results were further validated by Monte Carlo (MCNP) simulations. For the geometry of studied rods, the MCNP calculation were done to calculate the dependence of the response to delayed neutrons on rod enrichment, to show the viability to use the method for rod enrichment verification. An option of using cadmium inset in irradiation channel to overcome the effect of self-shielding for samples with higher enrichment was proposed, experimentally tested, and evaluated through MCNP calculations.
Asunto(s)
Protección Radiológica , Uranio , Neutrones , Método de Montecarlo , Fantasmas de ImagenRESUMEN
Avian (ortho)reovirus (ARV), which belongs to Reoviridae family, is a major domestic fowl pathogen and is the causative agent of viral tenosynovitis and chronic respiratory disease in chicken. ARV replicates within cytoplasmic inclusions, so-called viral factories, that form by phase separation and thus belong to a wider class of biological condensates. Here, we evaluate different optical imaging methods that have been developed or adapted to follow formation, fluidity and composition of viral factories and compare them with the complementary structural information obtained by well-established transmission electron microscopy and electron tomography. The molecular and cellular biology aspects for setting up and following virus infection in cells by imaging are described first. We then demonstrate that a wide-field version of fluorescence recovery after photobleaching is an effective tool to measure fluidity of mobile viral factories. A new technique, holotomographic phase microscopy, is then used for imaging of viral factory formation in live cells in three dimensions. Confocal Raman microscopy of infected cells provides "chemical" contrast for label-free segmentation of images and addresses important questions about biomolecular concentrations within viral factories and other biological condensates. Optical imaging is complemented by electron microscopy and tomography which supply higher resolution structural detail, including visualization of individual virions within the three-dimensional cellular context.
Asunto(s)
Reoviridae , Compartimentos de Replicación Viral , Línea Celular , Cuerpos de Inclusión Viral , Microscopía Electrónica , Imagen Multimodal , Replicación ViralRESUMEN
Triphenylphosphonium (TPP) derivatives are commonly used to target chemical into mitochondria. We show that alkyl-TPP cause reversible, dose- and hydrophobicity-dependent alterations of mitochondrial morphology and function and a selective decrease of mitochondrial inner membrane proteins including subunits of the respiratory chain complexes, as well as components of the mitochondrial calcium uniporter complex. The treatment with alkyl-TPP resulted in the cleavage of the pro-fusion and cristae organisation regulator Optic atrophy-1. The structural and functional effects of alkyl-TPP were found to be reversible and not merely due to loss of membrane potential. A similar effect was observed with the mitochondria-targeted antioxidant MitoQ.
Asunto(s)
Antioxidantes , Mitocondrias , Mitocondrias/metabolismo , Antioxidantes/farmacología , Membranas Mitocondriales/metabolismo , Cationes/metabolismo , Cationes/farmacología , Compuestos Organofosforados/farmacología , Proteínas de la Membrana/metabolismo , Potencial de la Membrana MitocondrialRESUMEN
Mitochondrial cristae expand the surface area of respiratory membranes and ultimately allow for the evolutionary scaling of respiration with cell volume across eukaryotes. The discovery of Mic60 homologs among alphaproteobacteria, the closest extant relatives of mitochondria, suggested that cristae might have evolved from bacterial intracytoplasmic membranes (ICMs). Here, we investigated the predicted structure and function of alphaproteobacterial Mic60, and a protein encoded by an adjacent gene Orf52, in two distantly related purple alphaproteobacteria, Rhodobacter sphaeroides and Rhodopseudomonas palustris. In addition, we assessed the potential physical interactors of Mic60 and Orf52 in R. sphaeroides. We show that the three α helices of mitochondrial Mic60's mitofilin domain, as well as its adjacent membrane-binding amphipathic helix, are present in alphaproteobacterial Mic60. The disruption of Mic60 and Orf52 caused photoheterotrophic growth defects, which are most severe under low light conditions, and both their disruption and overexpression led to enlarged ICMs in both studied alphaproteobacteria. We also found that alphaproteobacterial Mic60 physically interacts with BamA, the homolog of Sam50, one of the main physical interactors of eukaryotic Mic60. This interaction, responsible for making contact sites at mitochondrial envelopes, has been conserved in modern alphaproteobacteria despite more than a billion years of evolutionary divergence. Our results suggest a role for Mic60 in photosynthetic ICM development and contact site formation at alphaproteobacterial envelopes. Overall, we provide support for the hypothesis that mitochondrial cristae evolved from alphaproteobacterial ICMs and have therefore improved our understanding of the nature of the mitochondrial ancestor.
Asunto(s)
Alphaproteobacteria , Proteínas Mitocondriales , Proteínas Mitocondriales/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Evolución BiológicaRESUMEN
We report for the first time the use of two live-cell imaging agents from the group of luminescent transition metal complexes (IRAZOLVE-MITO and REZOLVE-ER) as cathodoluminescent probes. This first experimental demonstration shows the application of both probes for the identification of cellular structures at the nanoscale and near the native state directly in the cryo-scanning electron microscope. This approach can potentially be applied to correlative and multimodal approaches and used to target specific regions within vitrified samples at low electron beam energies.
Asunto(s)
Complejos de Coordinación , Renio , Complejos de Coordinación/química , Iridio/química , Luminiscencia , Renio/química , TemperaturaRESUMEN
The paper describes neutron field characterisation of low-flux multipurpose educational irradiator developed at Czech Technical University in Prague. The irradiator is aimed for demonstration experiments including neutron activation analysis, delayed neutron counting, or studies related to neutron and/or gamma detection and spectrometric devices. It may accommodate various neutron sources including 252Cf or AmBe radionuclide sources, D-D generator, or in-reactor irradiated nuclear material serving as delayed neutron source, or gamma sources including radionuclide ones or short-lived sources produced in the adjacent reactor. The characterisation was performed based on neutron activation technique using gold foils. It included two experimental parts. The first one verified the level of response symmetry in the four irradiation channels and characterisation of the axial distribution in the irradiation channels. Within the second one, the responses to thermal and epithermal neutrons and the cadmium ratio in the central irradiation position were determined. Whereas the former was determined solely with the 252Cf source, the latter was performed for all available sources: 252Cf, AmBe, and the D-D generator. The experimental results were further compared to calculations by the MCNP Monte Carlo code.
RESUMEN
A new method for neutron detection system non-linearity assessment and correction is proposed and was tested at the VR-1 reactor. It is based on the known behaviour of a zero-power nuclear reactor during the asymptotic positive period, which is used as a source of a true (non-linearity unaffected) signal for detection system non-linearity correction. The proposed method can determine the non-linearity correction continuously for a wide range of count rates and does not require additional equipment but the detection line for which the non-linearity effect is to be evaluated.
RESUMEN
Spirochetal bacteria were successfully isolated from mosquitoes (Culex pipiens, Aedes cinereus) in the Czech Republic between 1999 and 2002. Preliminary 16S rRNA phylogenetic sequence analysis showed that these strains differed significantly from other spirochetal genera within the family Spirochaetaceae and suggested a novel bacterial genus in this family. To obtain more comprehensive genomic information of these isolates, we used Illumina MiSeq and Oxford Nanopore technologies to sequence four genomes of these spirochetes (BR151, BR149, BR193, BR208). The overall size of the genomes varied between 1.68 and 1.78 Mb; the GC content ranged from 38.5 to 45.8%. Draft genomes were compared to 36 publicly available genomes encompassing eight genera from the class Spirochaetes. A phylogeny generated from orthologous genes across all taxa and the percentage of conserved proteins (POCP) confirmed the genus status of these novel spirochetes. The genus Entomospira gen. nov. is proposed with BR151 selected as type species of the genus. For this isolate and the closest related isolate, BR149, we propose the species name Entomospira culicis sp. nov. The two other isolates BR208 and BR193 are named Entomospira nematocera sp. nov. (BR208) and Entomospira entomophilus sp. nov. (BR193). Finally, we discuss their interesting phylogenetic positioning.