Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(4): 839-850.e18, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29628142

RESUMEN

Maize abnormal chromosome 10 (Ab10) encodes a classic example of true meiotic drive that converts heterochromatic regions called knobs into motile neocentromeres that are preferentially transmitted to egg cells. Here, we identify a cluster of eight genes on Ab10, called the Kinesin driver (Kindr) complex, that are required for both neocentromere motility and preferential transmission. Two meiotic drive mutants that lack neocentromere activity proved to be kindr epimutants with increased DNA methylation across the entire gene cluster. RNAi of Kindr induced a third epimutant and corresponding loss of meiotic drive. Kinesin gliding assays and immunolocalization revealed that KINDR is a functional minus-end-directed kinesin that localizes specifically to knobs containing 180 bp repeats. Sequence comparisons suggest that Kindr diverged from a Kinesin-14A ancestor ∼12 mya and has driven the accumulation of > 500 Mb of knob repeats and affected the segregation of thousands of genes linked to knobs on all 10 chromosomes.


Asunto(s)
Centrómero/metabolismo , Cinesinas/metabolismo , Meiosis , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Centrómero/genética , Cromosomas de las Plantas , Evolución Molecular , Haplotipos , Hibridación Fluorescente in Situ , Cinesinas/antagonistas & inhibidores , Cinesinas/clasificación , Cinesinas/genética , Modelos Genéticos , Mutagénesis , Filogenia , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Secuenciación Completa del Genoma , Zea mays/genética
2.
Cell ; 171(2): 269-270, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985558

RESUMEN

Quantitative trait genes have been difficult to analyze because of the subtle effects of their natural variation. Rodríguez-Leal et al. now develop a promoter-editing approach to generate a range of effective alleles for analysis, providing an avenue to investigate complex interactions among such genes.


Asunto(s)
Fenotipo , Sitios de Carácter Cuantitativo , Alelos , Mapeo Cromosómico , Variación Genética
3.
Cell ; 163(1): 9-11, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406361

RESUMEN

This year marks the 150(th) anniversary of the presentation by Gregor Mendel of his studies of plant hybridization to the Brunn Natural History Society. Their nature and meaning have been discussed many times. However, on this occasion, we reflect on the scientific enterprise and the perception of new discoveries.


Asunto(s)
Genética/historia , Modelos Genéticos , Animales , Pollos/genética , Cruzamientos Genéticos , Historia del Siglo XVIII , Pisum sativum/genética , Zea mays/genética
4.
Proc Natl Acad Sci U S A ; 120(1): e2211683120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574697

RESUMEN

Centromeres are the specialized regions of the chromosomes that direct faithful chromosome segregation during cell division. Despite their functional conservation, centromeres display features of rapidly evolving DNA and wide evolutionary diversity in size and organization. Previous work found that the noncanonical B-form DNA structures are abundant in the centromeres of several eukaryotic species with a possible implication for centromere specification. Thus far, systematic studies into the organization and function of non-B-form DNA in plants remain scarce. Here, we applied the oat system to investigate the role of non-B-form DNA in centromeres. We conducted chromatin immunoprecipitation sequencing using an antibody to the centromere-specific histone H3 variant (CENH3); this accurately positioned oat centromeres with different ploidy levels and identified a series of centromere-specific sequences including minisatellites and retrotransposons. To define genetic characteristics of oat centromeres, we surveyed the repeat sequences and found that dyad symmetries were abundant in oat centromeres and were predicted to form non-B-DNA structures in vivo. These structures including bent DNA, slipped DNA, Z-DNA, G-quadruplexes, and R-loops were prone to form within CENH3-binding regions. Dynamic conformational changes of predicted non-B-DNA occurred during the evolution from diploid to tetraploid to hexaploid oat. Furthermore, we applied the single-molecule technique of AFM and DNA:RNA immunoprecipitation with deep sequencing to validate R-loop enrichment in oat centromeres. Centromeric retrotransposons exhibited strong associations with R-loop formation. Taken together, our study elucidates the fundamental character of non-B-form DNA in the oat genome and reveals its potential role in centromeres.


Asunto(s)
Avena , Retroelementos , Avena/genética , Avena/metabolismo , Centrómero/genética , Centrómero/metabolismo , Histonas/genética , Histonas/metabolismo , Poliploidía
5.
Trends Genet ; 38(1): 1-3, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34215425

RESUMEN

Two recent studies have addressed the long-term consequences of whole genome duplications (WGD). Specifically, they analyzed transcriptomes of the plant Arabidopsis thaliana and of four salmonids to assess the impact of WGD on gene expression. These studies point to commonalities in gene expression adjustments after polyploidization that we outline and discuss below.


Asunto(s)
Arabidopsis , Duplicación de Gen , Arabidopsis/genética , Evolución Molecular , Dosificación de Gen , Genoma de Planta/genética , Plantas/genética
6.
Plant Cell ; 34(7): 2466-2474, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35253876

RESUMEN

Gene duplications have long been recognized as a contributor to the evolution of genes with new functions. Multiple copies of genes can result from tandem duplication, from transposition to new chromosomes, or from whole-genome duplication (polyploidy). The most common fate is that one member of the pair is deleted to return the gene to the singleton state. Other paths involve the reduced expression of both copies (hypofunctionalization) that are held in duplicate to maintain sufficient quantity of function. The two copies can split functions (subfunctionalization) or can diverge to generate a new function (neofunctionalization). Retention of duplicates resulting from doubling of the whole genome occurs for genes involved with multicomponent interactions such as transcription factors and signal transduction components. In contrast, these classes of genes are underrepresented in small segmental duplications. This complementary pattern suggests that the balance of interactors affects the fate of the duplicate pair. We discuss the different mechanisms that maintain duplicated genes, which may change over time and intersect.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genes Duplicados/genética , Poliploidía , Factores de Transcripción/genética
7.
Bioessays ; 45(2): e2200187, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36470594

RESUMEN

Classic genetics studies found that genomic imbalance caused by changing the dosage of part of the genome (aneuploidy) has more detrimental effects than altering the dosage of the whole genome (ploidy). Previous analysis revealed global modulation of gene expression triggered by aneuploidy across various species, including maize (Zea mays), Arabidopsis, yeast, mammals, etc. Plant microRNAs (miRNAs) are a class of 20- to 24-nt endogenous small noncoding RNAs that carry out post-transcriptional gene expression regulation. That miRNAs and their putative targets are preferentially retained as duplicates after whole-genome duplication, as are many transcription factors and signaling components, indicates miRNAs are likely to be dosage-sensitive and potentially involved in genomic balance networks. This review addresses the following questions regarding the role of miRNAs in genomic imbalance. (1) How do aneuploidy and polyploidy impact the expression of miRNAs? (2) Do miRNAs play a regulatory role in modulating the expression of their targets under genomic imbalance?


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica de las Plantas , Genómica , Aneuploidia , Factores de Transcripción/metabolismo , ARN de Planta/genética , Mamíferos/genética
8.
Genome Res ; 31(8): 1409-1418, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34244230

RESUMEN

R-loops are stable chromatin structures comprising a DNA:RNA hybrid and a displaced single-stranded DNA. R-loops have been implicated in gene expression and chromatin structure, as well as in replication blocks and genome instability. Here, we conducted a genome-wide identification of R-loops and identified more than 700,000 R-loop peaks in the maize (Zea mays) genome. We found that sense R-loops were mainly enriched in promoters and transcription termination sites and relatively less enriched in gene bodies, which is different from the main gene-body localization of sense R-loops in Arabidopsis and Oryza sativa At the chromosome scale, maize R-loops were enriched in pericentromeric heterochromatin regions, and a significant portion of R-loops were derived from transposable elements. In centromeres, R-loops preferentially formed within the binding regions of the centromere-specific histone CENH3, and centromeric retrotransposons were strongly associated with R-loop formation. Furthermore, centromeric retrotransposon R-loops were observed by applying the single-molecule imaging technique of atomic force microscopy. These findings elucidate the fundamental character of R-loops in the maize genome and reveal the potential role of R-loops in centromeres.


Asunto(s)
Estructuras R-Loop , Zea mays , Centrómero/genética , Mapeo Cromosómico , Histonas/genética , Histonas/metabolismo , Zea mays/genética , Zea mays/metabolismo
9.
Plant Cell ; 33(4): 901-916, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33656551

RESUMEN

The phenotypic consequences of the addition or subtraction of part of a chromosome is more severe than changing the dosage of the whole genome. By crossing diploid trisomies to a haploid inducer, we identified 17 distal segmental haploid disomies that cover ∼80% of the maize genome. Disomic haploids provide a level of genomic imbalance that is not ordinarily achievable in multicellular eukaryotes, allowing the impact to be stronger and more easily studied. Transcriptome size estimates revealed that a few disomies inversely modulate most of the transcriptome. Based on RNA sequencing, the expression levels of genes located on the varied chromosome arms (cis) in disomies ranged from being proportional to chromosomal dosage (dosage effect) to showing dosage compensation with no expression change with dosage. For genes not located on the varied chromosome arm (trans), an obvious trans-acting effect can be observed, with the majority showing a decreased modulation (inverse effect). The extent of dosage compensation of varied cis genes correlates with the extent of trans inverse effects across the 17 genomic regions studied. The results also have implications for the role of stoichiometry in gene expression, the control of quantitative traits, and the evolution of dosage-sensitive genes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Haploidia , Zea mays/genética , Cromosomas de las Plantas , Compensación de Dosificación (Genética) , Genes de Plantas , Genoma de Planta , Análisis de Secuencia de ARN
10.
Plant Cell ; 33(4): 917-939, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33677584

RESUMEN

Genomic imbalance caused by changing the dosage of individual chromosomes (aneuploidy) has a more detrimental effect than varying the dosage of complete sets of chromosomes (ploidy). We examined the impact of both increased and decreased dosage of 15 distal and 1 interstitial chromosomal regions via RNA-seq of maize (Zea mays) mature leaf tissue to reveal new aspects of genomic imbalance. The results indicate that significant changes in gene expression in aneuploids occur both on the varied chromosome (cis) and the remainder of the genome (trans), with a wider spread of modulation compared with the whole-ploidy series of haploid to tetraploid. In general, cis genes in aneuploids range from a gene-dosage effect to dosage compensation, whereas for trans genes the most common effect is an inverse correlation in that expression is modulated toward the opposite direction of the varied chromosomal dosage, although positive modulations also occur. Furthermore, this analysis revealed the existence of increased and decreased effects in which the expression of many genes under genome imbalance are modulated toward the same direction regardless of increased or decreased chromosomal dosage, which is predicted from kinetic considerations of multicomponent molecular interactions. The findings provide novel insights into understanding mechanistic aspects of gene regulation.


Asunto(s)
Diploidia , Regulación de la Expresión Génica de las Plantas , Zea mays/genética , Aneuploidia , Cromosomas de las Plantas , Compensación de Dosificación (Genética) , Genoma de Planta , Ploidias
11.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33990465

RESUMEN

The Knl1-Mis12-Ndc80 (KMN) network is an essential component of the kinetochore-microtubule attachment interface, which is required for genomic stability in eukaryotes. However, little is known about plant Knl1 proteins because of their complex evolutionary history. Here, we cloned the Knl1 homolog from maize (Zea mays) and confirmed it as a constitutive central kinetochore component. Functional assays demonstrated their conserved role in chromosomal congression and segregation during nuclear division, thus causing defective cell division during kernel development when Knl1 transcript was depleted. A 145 aa region in the middle of maize Knl1, that did not involve the MELT repeats, was associated with the interaction of spindle assembly checkpoint (SAC) components Bub1/Mad3 family proteins 1 and 2 (Bmf1/2) but not with the Bmf3 protein. They may form a helical conformation with a hydrophobic interface with the TPR domain of Bmf1/2, which is similar to that of vertebrates. However, this region detected in monocots shows extensive divergence in eudicots, suggesting that distinct modes of the SAC to kinetochore connection are present within plant lineages. These findings elucidate the conserved role of the KMN network in cell division and a striking dynamic of evolutionary patterns in the SAC signaling and kinetochore network.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Plantas/genética , Transducción de Señal/genética , Huso Acromático/metabolismo , Zea mays/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Segregación Cromosómica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/clasificación , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , RNA-Seq/métodos , Semillas/genética , Semillas/metabolismo , Homología de Secuencia de Aminoácido , Zea mays/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088847

RESUMEN

B chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism. The sequence assembly reveals detailed locations of the elements involved with the cis and trans functions of its drive mechanism, consisting of nondisjunction at the second pollen mitosis and preferential fertilization of the egg by the B-containing sperm. We identified 758 protein-coding genes in 125.9 Mb of B chromosome sequence, of which at least 88 are expressed. Our results demonstrate that transposable elements in the B chromosome are shared with the standard A chromosome set but multiple lines of evidence fail to detect a syntenic genic region in the A chromosomes, suggesting a distant origin. The current gene content is a result of continuous transfer from the A chromosomal complement over an extended evolutionary time with subsequent degradation but with selection for maintenance of this nonvital chromosome.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Polen/genética , Proteínas Gestacionales/genética , Zea mays/genética , Meiosis/genética , Mitosis/genética
13.
Plant J ; 110(1): 193-211, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34997647

RESUMEN

The non-essential supernumerary maize (Zea mays) B chromosome (B) has recently been shown to contain active genes and to be capable of impacting gene expression of the A chromosomes. However, the effect of the B chromosome on gene expression is still unclear. In addition, it is unknown whether the accumulation of the B chromosome has a cumulative effect on gene expression. To examine these questions, the global expression of genes, microRNAs (miRNAs), and transposable elements (TEs) of leaf tissue of maize W22 plants with 0-7 copies of the B chromosome was studied. All experimental genotypes with B chromosomes displayed a trend of upregulated gene expression for a subset of A-located genes compared to the control. Over 3000 A-located genes are significantly differentially expressed in all experimental genotypes with the B chromosome relative to the control. Modulations of these genes are largely determined by the presence rather than the copy number of the B chromosome. By contrast, the expression of most B-located genes is positively correlated with B copy number, showing a proportional gene dosage effect. The B chromosome also causes increased expression of A-located miRNAs. Differentially expressed miRNAs potentially regulate their targets in a cascade of effects. Furthermore, the varied copy number of the B chromosome leads to the differential expression of A-located and B-located TEs. The findings provide novel insights into the function and properties of the B chromosome.


Asunto(s)
Cromosomas de las Plantas , Zea mays , Aneuploidia , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Zea mays/genética
14.
Plant Cell ; 32(10): 3113-3123, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32817254

RESUMEN

Comparative genomics has revealed common occurrences in karyotype evolution such as chromosomal end-to-end fusions and insertions of one chromosome into another near the centromere, as well as many cases of de novo centromeres that generate positional polymorphisms. However, how rearrangements such as dicentrics and acentrics persist without being destroyed or lost remains unclear. Here, we sought experimental evidence for the frequency and timeframe for inactivation and de novo formation of centromeres in maize (Zea mays). The pollen from plants with supernumerary B chromosomes was gamma-irradiated and then applied to normal maize silks of a line without B chromosomes. In ∼8,000 first-generation seedlings, we found many B-A translocations, centromere expansions, and ring chromosomes. We also found many dicentric chromosomes, but a fraction of these show only a single primary constriction, which suggests inactivation of one centromere. Chromosomal fragments were found without canonical centromere sequences, revealing de novo centromere formation over unique sequences; these were validated by immunolocalization with Thr133-phosphorylated histone H2A, a marker of active centromeres, and chromatin immunoprecipitation-sequencing with the CENH3 antibody. These results illustrate the regular occurrence of centromere birth and death after chromosomal rearrangement during a narrow window of one to potentially only a few cell cycles for the rearranged chromosomes to be recognized in this experimental regime.


Asunto(s)
Centrómero/genética , Cromosomas de las Plantas/genética , Zea mays/genética , Secuenciación de Inmunoprecipitación de Cromatina , Aberraciones Cromosómicas , Cromosomas de las Plantas/efectos de la radiación , Hibridación Fluorescente in Situ , Rayos X , Zea mays/efectos de la radiación
15.
Chromosome Res ; 30(2-3): 229-239, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35412169

RESUMEN

B chromosomes, also known as supernumerary chromosomes, are dispensable elements in the genome of many plants, animals, and fungi. Many B chromosomes have evolved one or more drive mechanisms to transmit themselves at a higher frequency than predicted by Mendelian genetics, and these mechanisms counteract the tendency of non-essential genetic elements to be lost over time. The frequency of Bs in a population results from a balance between their effect on host fitness and their transmission rate. Here, we will summarize the findings of the drive process of plant B chromosomes, focusing on maize and rye.


Asunto(s)
Cromosomas de las Plantas , Cromosomas , Animales , Cromosomas de las Plantas/genética , Zea mays/genética
16.
Plant Cell Physiol ; 63(11): 1641-1653, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-35639623

RESUMEN

Modern agriculture depends on a narrow variety of crop species, leaving global food and nutritional security highly vulnerable to the adverse effects of climate change and population expansion. Crop improvement using conventional and molecular breeding approaches leveraging plant genetic diversity using crop wild relatives (CWRs) has been one approach to address these issues. However, the rapid pace of the global change requires additional innovative solutions to adapt agriculture to meet global needs. Neodomestication-the rapid and targeted introduction of domestication traits using introgression or genome editing of CWRs-is being explored as a supplementary approach. These methods show promise; however, they have so far been limited in efficiency and applicability. We propose expanding the scope of neodomestication beyond truly wild CWRs to include feral crops as a source of genetic diversity for novel crop development, in this case 'redomestication'. Feral crops are plants that have escaped cultivation and evolved independently, typically adapting to their local environments. Thus, feral crops potentially contain valuable adaptive features while retaining some domestication traits. Due to their genetic proximity to crop species, feral crops may be easier targets for de novo domestication (i.e. neodomestication via genome editing techniques). In this review, we explore the potential of de novo redomestication as an application for novel crop development by genome editing of feral crops. This approach to efficiently exploit plant genetic diversity would access an underutilized reservoir of genetic diversity that could prove important in support of global food insecurity in the face of the climate change.


Asunto(s)
Productos Agrícolas , Domesticación , Productos Agrícolas/genética , Edición Génica , Agricultura , Fenotipo
17.
Plant Biotechnol J ; 20(11): 2051-2063, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35722725

RESUMEN

Centromeres are the genomic regions that organize and regulate chromosome behaviours during cell cycle, and their variations are associated with genome instability, karyotype evolution and speciation in eukaryotes. The highly repetitive and epigenetic nature of centromeres were documented during the past half century. With the aid of rapid expansion in genomic biotechnology tools, the complete sequence and structural organization of several plant and human centromeres were revealed recently. Here, we systematically summarize the current knowledge of centromere biology with regard to the DNA compositions and the histone H3 variant (CENH3)-dependent centromere establishment and identity. We discuss the roles of centromere to ensure cell division and to maintain the three-dimensional (3D) genomic architecture in different species. We further highlight the potential applications of manipulating centromeres to generate haploids or to induce polyploids offspring in plant for breeding programs, and of targeting centromeres with CRISPR/Cas for chromosome engineering and speciation. Finally, we also assess the challenges and strategies for de novo design and synthesis of centromeres in plant artificial chromosomes. The biotechnology applications of plant centromeres will be of great potential for the genetic improvement of crops and precise synthetic breeding in the future.


Asunto(s)
Centrómero , Fitomejoramiento , Humanos , Centrómero/genética , Cromosomas de las Plantas/genética , Plantas/genética , Epigenómica , Biotecnología
18.
Bioinformatics ; 37(14): 2068-2069, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33270838

RESUMEN

MOTIVATION: The Gene Network Estimation Tool (GNET) is designed to build gene regulatory networks (GRNs) from transcriptomic gene expression data with a probabilistic graphical model. The data preprocessing, model construction and visualization modules of the original GNET software were developed on different programming platforms, which were inconvenient for users to deploy and use. RESULTS: Here, we present GNET2, an improved implementation of GNET as an integrated R package. GNET2 provides more flexibility for parameter initialization and regulatory module construction based on the core iterative modeling process of the original algorithm. The data exchange interface of GNET2 is handled within an R session automatically. Given the growing demand for regulatory network reconstruction from transcriptomic data, GNET2 offers a convenient option for GRN inference on large datasets. AVAILABILITY AND IMPLEMENTATION: The source code of GNET2 is available at https://github.com/jianlin-cheng/GNET2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Reguladoras de Genes , Transcriptoma , Algoritmos , Modelos Estadísticos , Programas Informáticos
19.
Chromosome Res ; 29(3-4): 313-325, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34406545

RESUMEN

The B chromosome of maize undergoes nondisjunction at the second pollen mitosis as part of its accumulation mechanism. Previous work identified 9-Bic-1 (9-B inactivated centromere-1), which comprises an epigenetically silenced B chromosome centromere that was translocated to the short arm of chromosome 9(9S). This chromosome is stable in isolation, but when normal B chromosomes are added to the genotype, it will attempt to undergo nondisjunction during the second pollen mitosis and usually fractures the chromosome in 9S. These broken chromosomes allow a test of whether the inactive centromere is reactivated or whether a de novo centromere is formed elsewhere on the chromosome to allow recovery of fragments. Breakpoint determination on the B chromosome and chromosome 9 showed that mini chromosome B1104 has the same breakpoint as 9-Bic-1 in the B centromere region and includes a portion of 9S. CENH3 binding was found on the B centromere region and on 9S, suggesting both centromere reactivation and de novo centromere formation. Another mini chromosome, B496, showed evidence of rearrangement, but it also only showed evidence for a de novo centromere. Other mini chromosome fragments recovered were directly derived from the B chromosome with breakpoints concentrated near the centromeric knob region, which suggests that the B chromosome is broken at a low frequency due to the failure of the sister chromatids to separate at the second pollen mitosis. Our results indicate that both reactivation and de novo centromere formation could occur on fragments derived from the progenitor possessing an inactive centromere.


Asunto(s)
Cromosomas de las Plantas , Zea mays , Centrómero/genética , Aberraciones Cromosómicas , Cromosomas de las Plantas/genética , Mitosis , Zea mays/genética
20.
Proc Natl Acad Sci U S A ; 116(5): 1679-1685, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30655344

RESUMEN

Whole-chromosome painting probes were developed for each of the 10 chromosomes of maize by producing amplifiable libraries of unique sequences of oligonucleotides that can generate labeled probes through transcription reactions. These paints allow identification of individual homologous chromosomes for many applications as demonstrated in somatic root tip metaphase cells, in the pachytene stage of meiosis, and in interphase nuclei. Several chromosomal aberrations were examined as proof of concept for study of various rearrangements using probes that cover the entire chromosome and that label diverse varieties. The relationship of the supernumerary B chromosome and the normal chromosomes was examined with the finding that there is no detectable homology between any of the normal A chromosomes and the B chromosome. Combined with other chromosome-labeling techniques, a complete set of whole-chromosome oligonucleotide paints lays the foundation for future studies of the structure, organization, and evolution of genomes.


Asunto(s)
Núcleo Celular/genética , Cromosomas de las Plantas/genética , Sondas de ADN/genética , Reordenamiento Génico/genética , Aberraciones Cromosómicas , Pintura Cromosómica/métodos , Genoma de Planta/genética , Metafase/genética , Oligonucleótidos/genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA