Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Res ; 182: 109076, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31901628

RESUMEN

This study is the first attempt to evaluate occurrence, distribution and potential health impacts of As at a national scale in Italy. In various environmental matrices, As geochemical distribution was investigated and carcinogenic and non-carcinogenic risks were assessed with respect to different exposure routes and age groups. Both deterministic and probabilistic methods were used to determine the health risks. Geochemical mapping at a sub-continental scale provided a useful tool to spatially represent As concentration and the critical areas posing a health threat to inhabitants. The results show that significant As concentrations in tap water and soil (up to 27.20 µg/l and 62.20 mg/kg, respectively) are mainly governed by geological features. In the central parts of Italy, where alkaline volcanic materials and consequently high levels of As occur, the residents are prone to health issues. Daily exposure to As in tap water is unparalleled playing an important role in the potential cancer and non-cancer risks. The Incremental Lifetime Cancer Risk for skin cancer and also lung and bladder cancer associated with tap water ingestion interestingly shows that (i) almost 80% of the computed values fall above the internationally accepted benchmark value of 1 × 10-5; (ii) majority of the data exceed the acceptable risk proposed by most jurisdictions, such as that of Italian law (1 × 10-6). Further, geographical variation of health risk highlights high carcinogenic and non-carcinogenic risk associated with water ingestion for those living in the northern Alps (including the city of Trento) and the central and southern Italy (including the capital Rome and the cities of Napoli and Catanzaro). According to the results, application of the probabilistic method which considers variability and uncertainty is preferred to the deterministic approach for risk assessment. The sensitivity analysis showed that As concentration in drinking water and exposure duration are the factors with the greatest impact on the outcome of risk assessment (for all age groups). The results of the current study may be a good starting point for authorities to urgently decide about the needed policy actions in order to prevent the adverse health effects and to reduce the human health risk due to As exposure.


Asunto(s)
Arsénico , Neoplasias , Contaminantes Químicos del Agua , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Arsénico/toxicidad , Ciudades , Exposición a Riesgos Ambientales , Humanos , Italia , Persona de Mediana Edad , Neoplasias/epidemiología , Medición de Riesgo , Ciudad de Roma , Contaminantes Químicos del Agua/toxicidad , Adulto Joven
2.
Sci Total Environ ; 930: 172524, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641093

RESUMEN

Phosphorus (P) is one of the essential elements for life on Earth. As a major nutrient it is needed for healthy growth both in plants and living organisms. Although the abundance of P in the Earth's upper continental crust is relatively high (655 mg/kg), many soil types are poor in available phosphorus. The main natural factors controlling the availability of P in soil are pH, mineralogy, and formation of insoluble complexes with Al and Fe under acidic, and with Ca and Mg under alkaline soil conditions. Superimposed weathering processes and climate contribute strongly to P mobility and availability. Additionally, a large fraction of total soil P is in organic forms, which are not directly available to plants. Phosphorus is a major component in fertilisers and thus a significant source of anthropogenic P in soil and water. In the agricultural soil samples that were collected during the Geochemical Mapping of Agricultural and grazing land Soil (GEMAS) project, the total P concentrations (XRF, median 786 m/kg) are only slightly higher than those extracted by hot aqua regia (AR, median 653 mg/kg), while the median concentration in the weak MMI® cold extraction is as low as 4.1 mg/kg. The AR results show very low P concentrations over the coarse-grained sandy sediments of the last glaciation in central and northern Europe and in calcareous soil. The southern limit of the last glaciation is visible as a concentration break on the geochemical maps. In general, north-eastern and north-western Europe are marked by high P values, probably related to cold and humid climate and enrichment in humus-rich coastal soil. The spatial distribution of P at the continental-scale is dominated by geogenic and climatic factors, and the anthropogenic influence is difficult to assess and quantify.

3.
Environ Geochem Health ; 33(4): 399-408, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21424229

RESUMEN

This study aimed at statistically investigating the association between the internal exposure of children and young adults to uranium (U) and epidemiologically relevant external determinants of exposure. The investigation was performed with data from two studies within the framework of the German health-related environmental monitoring program: The German Environmental Survey for Children (GerES IV) conducted by the Federal Environment Agency (Umweltbundesamt) with data on 1,780 children 3-14 years of age and their home environment and the German Environmental Specimen Bank (ESB, section: human specimens) with data on 2,253 students 20-29 years of age. Both studies provided data on the U levels in human urine for all probands. GerES IV furthermore provided an extensive environmental and demographic database on, e.g., U levels in drinking water. The data from GerES IV and ESB were linked by GIS to spatially relevant exposure information, including background values of U in stream sediments and in upper and lower soils, U levels in mosses and particulate matter in the lower atmosphere, precipitation and elevation as well as forest density. Bivariate correlation analysis and two decision tree models showed moderate but significant associations between U in human urine and U levels in drinking water, stream sediments and upper and lower soils. Future investigations considering additional epidemiologically relevant data sets may differentiate the results. Furthermore, the sample design of future environmental epidemiology studies should take the spatial evaluation of the data into greater account.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Sistemas de Información Geográfica , Uranio/análisis , Adolescente , Adulto , Niño , Preescolar , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/orina , Estudios Epidemiológicos , Monitoreo Epidemiológico , Femenino , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Alemania/epidemiología , Humanos , Masculino , Ríos/química , Suelo/análisis , Suelo/química , Uranio/metabolismo , Uranio/orina , Abastecimiento de Agua/análisis
4.
Mar Pollut Bull ; 164: 112005, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33517082

RESUMEN

Coastal lagoons are complex environments threatened by natural and anthropogenic stressors. Here, we tested the effectiveness of combining physical, geochemical and chemical measurements with biomarker data obtained in field-exposed marine mussels (Mytilus galloprovincialis) as a biomonitoring strategy for a highly pressured lagoon (Pialassa Baiona, Ravenna, Italy). Data showed a spatial trend of sediment contamination by Hg, Pt, Au, Ag, Mo, Re, Cd, Pd and Zn. Local conditions of high water temperature/low conductivity were detected among selected sites. After a 30-day in situ exposure, Ag and Hg were the most bioaccumulated elements (10 and 5 folds, respectively) in mussels followed by Sb, Al, Ti and Fe. Decreased survival, lysosomal dysfunctions, increased metallothionein content and peroxisome proliferation were observed in mussels in relation to metal spatial distribution and physico-chemical fluctuations. Overall, this study provides a further confirmation of the role of biomonitoring to reliably assess the environmental quality of highly pressured lagoons.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Monitoreo Biológico , Biomarcadores , Monitoreo del Ambiente , Italia , Contaminantes Químicos del Agua/análisis
5.
Environ Geochem Health ; 31(6): 693-706, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19229640

RESUMEN

The concentration of uranium was determined in 944 samples from stream water by the inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) method and represented on a color-shaded contour map. Uranium concentrations in surface water were determined to be between 0.007 µg/l and 43.7 µg/l with median of 0.33 µg/l. The regional distribution of uranium is influenced primarily by lithological and anthropogenic factors. In Mecklenburg, northern Brandenburg, and eastern Schleswig-Holstein, elevated uranium concentrations coincide with the extent of the last Weichselian ice sheet. The maximum concentrations are observed in the surface waters of the old mining districts in the western part of the Ore Mountains and in eastern Thuringia. Elevated concentrations are found in areas of agriculturally used loess soils. These concentrations correlate with the use of phosphate fertilizers. There is a zone of elevated concentrations up to 10.0 µg U/l in the Keuper Sandstone area south of the Thuringian Forest and from northwest of Stuttgart as far as Coburg. The distribution of elevated values in mineral water shows a clear correlation with the elevated values in surface water and the geology of those locations. Bunter and Keuper strata are the most important uranium source.


Asunto(s)
Aguas Minerales/análisis , Ríos/química , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis , Agricultura , Geología , Alemania , Espectrometría de Masas , Minería , Monitoreo de Radiación
6.
Sci Total Environ ; 627: 975-984, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29426222

RESUMEN

A reliable overview of measured concentrations of TC, TN and TS, TOC/TN ratios, and their regional distribution patterns in agricultural soil at the continental scale and based on measured data has been missing - despite much previous work on local and the European scales. Detection and mapping of natural (ambient) background element concentrations and variability in Europe was the focus of this work. While total C and S data had been presented in the GEMAS atlas already, this work delivers more precise (lower limit of determination) and fully quantitative data, and for the first time high-quality TN data. Samples were collected from the uppermost 20cm of ploughed soil (Ap horizon) at 2108 sites with an even sampling density of one site per 2500km2 for one individual land-use class (agricultural) across Europe (33 countries). Laboratory-independent quality control from sampling to analysis guaranteed very good data reliability and accuracy. Total carbon concentrations ranged from 0.37 to 46.3wt% (median: 2.20wt%) and TOC from 0.40 to 46.0wt% (median: 1.80wt%). Total nitrogen ranged from 0.018 to 2.64wt% (median: 0.169wt%) and TS from 0.008 to 9.74wt% (median: 0.034wt%), all with large variations in most countries. The TOC/TN ratios ranged from 1.8 to 252 (median: 10.1), with the largest variation in Spain and the smallest in some eastern European countries. Distinct and repetitive patterns emerge at the European scale, reflecting mostly geogenic and longer-term climatic influence responsible for the spatial distribution of TC, TN and TS. Different processes become visible at the continental scale when examining TC, TN and TS concentrations in agricultural soil Europe-wide. This facilitates large-scale land-use management and allows specific areas (subregional to local) to be identified that may require more detailed research.

7.
Sci Total Environ ; 622-623: 1277-1293, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29890595

RESUMEN

Agricultural soil (Ap-horizon, 0-20cm) samples were collected in Europe (33 countries, 5.6millionkm2) as part of the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil-mapping project. The GEMAS survey area includes diverse groups of soil parent materials with varying geological history, a wide range of climate zones, and landscapes. The soil data have been used to provide a general view of U and Th mobility at the continental scale, using aqua regia and MMI® extractions. The U-Th distribution pattern is closely related to the compositional variation of the geological bedrock on which the soil is developed and human impact on the environment has not concealed these genuine geochemical features. Results from both extraction methods (aqua regia and MMI®) used in this study support this general picture. Ternary plots of several soil parameters have been used to evaluate chemical weathering trends. In the aqua regia extraction, some relative Th enrichment-U loss is related to the influence of alkaline and schist bedrocks, due to weathering processes. Whereas U enrichment-Th loss characterizes soils developed on alkaline and mafic bedrock end-members on one hand and calcareous rock, with a concomitant Sc depletion (used as proxy for mafic lithologies), on the other hand. This reflects weathering processes sensu latu, and their role in U retention in related soils. Contrary to that, the large U enrichment relative to Th in the MMI® extraction and the absence of end-member parent material influence explaining the enrichment indicates that lithology is not the cause of such enrichment. Comparison of U and Th to the soil geological parent material evidenced i) higher capability of U to be weathered in soils and higher resistance of Th to weathering processes and its enrichment in soils; and, ii) the MMI® extraction results show a greater affinity of U than Th for the bearing phases like clays and organic matter. The comparison of geological units with U anomalies in agricultural soil at the country scale (France) enables better understanding of U sources in the surficial environment and can be a useful tool in risk assessments.

8.
Sci Total Environ ; 598: 146-159, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28441593

RESUMEN

This study aimed at evaluating the environmental quality of a coastal lagoon (Pialassa Piomboni, NW-Adriatic, Italy) by combining analyses of biomarkers of environmental stress and bioaccumulation of contaminants in marine mussels (Mytilus galloprovincialis) transplanted for 28days to six selected sites. Assessed biomarkers encompassed lysosomal endpoints, oxidative stress and detoxification parameters, specific responses to metals, neuro- and genotoxic substances; chemical analyses focused on PAHs, metals, pesticide and pharmaceuticals. Results showed up to a 67-fold bioaccumulation of 4- to 6-ring PAHs, including pyrene, fluoranthene, chrysene and benzo(ghi)perylene in transplanted mussels compared to reference conditions (T0). A 10-fold increase of Fe, Cr and Mn was observed, while pesticides and pharmaceuticals were not or slightly detected. The onset of a significant (p<0.05) general stress syndrome occurred in exposed mussels, as outlined by a 50-57.7% decrease in haemocytes lysosomal membrane stability and an increased lysosomal volume (22.6-26.9%) and neutral lipid storage (18.9-48.8%) observed in digestive gland. Data also revealed a diffuse lipofuscin accumulation (86.5-139.3%; p<0.05) in digestive gland, occasionally associated to a catalase activity inhibition in gill, indicating an increased vulnerability toward pro-oxidant factors. Higher levels of primary DNA damage (258%; p<0.05) and PAH accumulation were found in mussels exposed along the eastern shoreline, hosting a petrochemical settlement. Bioaccumulated metals showed a positive correlation with increased metallothionein content (85-208%; p<0.05) observed in mussels from most sites. Overall, the use of physiological and chemical analyses detected chronic alterations of the mussel health status induced by specific toxicological pathways, proving a suitable approach in the framework of biomonitoring programs of coastal lagoons.


Asunto(s)
Biomarcadores/análisis , Monitoreo del Ambiente , Mytilus , Contaminantes Químicos del Agua/análisis , Animales , Italia , Metales Pesados/análisis , Plaguicidas/análisis , Preparaciones Farmacéuticas/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Agua de Mar/análisis
9.
Sci Total Environ ; 544: 476-94, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26657393

RESUMEN

Assessing trace metal pollution using feathers has long attracted the attention of ecotoxicologists as a cost-effective and non-invasive biomonitoring method. In order to interpret the concentrations in feathers considering the external contamination due to lithic residue particles, we adopted a novel geochemical approach. We analysed 58 element concentrations in feathers of wild Eurasian Greater Flamingo Phoenicopterus roseus fledglings, from 4 colonies in Western Europe (Spain, France, Sardinia, and North-eastern Italy) and one group of adults from zoo. In addition, 53 elements were assessed in soil collected close to the nesting islets. This enabled to compare a wide selection of metals among the colonies, highlighting environmental anomalies and tackling possible causes of misinterpretation of feather results. Most trace elements in feathers (Al, Ce, Co, Cs, Fe, Ga, Li, Mn, Nb, Pb, Rb, Ti, V, Zr, and REEs) were of external origin. Some elements could be constitutive (Cu, Zn) or significantly bioaccumulated (Hg, Se) in flamingos. For As, Cr, and to a lesser extent Pb, it seems that bioaccumulation potentially could be revealed by highly exposed birds, provided feathers are well cleaned. This comprehensive study provides a new dataset and confirms that Hg has been accumulated in feathers in all sites to some extent, with particular concern for the Sardinian colony, which should be studied further including Cr. The Spanish colony appears critical for As pollution and should be urgently investigated in depth. Feathers collected from North-eastern Italy were the hardest to clean, but our methods allowed biological interpretation of Cr and Pb. Our study highlights the importance of external contamination when analysing trace elements in feathers and advances methodological recommendations in order to reduce the presence of residual particles carrying elements of external origin. Geochemical data, when available, can represent a valuable tool for a correct interpretation of the analytical results.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Plumas/química , Metales Pesados/análisis , Oligoelementos/análisis , Animales , Aves , Francia , Italia , España
11.
Sci Total Environ ; 426: 196-210, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22503552

RESUMEN

Applied geochemistry and environmental sciences invariably deal with compositional data. Classically, the original or log-transformed absolute element concentrations are studied. However, compositional data do not vary independently, and a concentration based approach to data analysis can lead to faulty conclusions. For this reason a better statistical approach was introduced in the 1980s, exclusively based on relative information. Because the difference between the two methods should be most pronounced in large-scale, and therefore highly variable, datasets, here a new dataset of agricultural soils, covering all of Europe (5.6 million km(2)) at an average sampling density of 1 site/2500 km(2), is used to demonstrate and compare both approaches. Absolute element concentrations are certainly of interest in a variety of applications and can be provided in tabulations or concentration maps. Maps for the opened data (ratios to other elements) provide more specific additional information. For compositional data XY plots for raw or log-transformed data should only be used with care in an exploratory data analysis (EDA) sense, to detect unusual data behaviour, candidate subgroups of samples, or to compare pre-defined groups of samples. Correlation analysis and the Euclidean distance are not mathematically meaningful concepts for this data type. Element relationships have to be investigated via a stability measure of the (log-)ratios of elements. Logratios are also the key ingredient for an appropriate multivariate analysis of compositional data.


Asunto(s)
Agricultura/estadística & datos numéricos , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Suelo/química , Oligoelementos/análisis , Análisis Multivariante , Países Escandinavos y Nórdicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA