Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 291(43): 22534-22543, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27613865

RESUMEN

Protein translocation across the bacterial cytoplasmic membrane is an essential process catalyzed predominantly by the Sec translocase. This system consists of the membrane-embedded protein-conducting channel SecYEG, the motor ATPase SecA, and the heterotrimeric SecDFyajC membrane protein complex. Previous studies suggest that anionic lipids are essential for SecA activity and that the N terminus of SecA is capable of penetrating the lipid bilayer. The role of lipid binding, however, has remained elusive. By employing differently sized nanodiscs reconstituted with single SecYEG complexes and comprising varying amounts of lipids, we establish that SecA gains access to the SecYEG complex via a lipid-bound intermediate state, whereas acidic phospholipids allosterically activate SecA for ATP-dependent protein translocation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fosfolípidos/metabolismo , Canales de Translocación SEC/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Fosfolípidos/genética , Transporte de Proteínas/fisiología , Canales de Translocación SEC/química , Canales de Translocación SEC/genética , Proteína SecA
2.
Mol Microbiol ; 92(4): 813-23, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24666282

RESUMEN

A critical event during spore germination is the release of Ca-DPA (calcium in complex with dipicolinic acid). The mechanism of release of Ca-DPA through the inner membrane of the spore is not clear, but proteins encoded by the Bacillus subtilis spoVA operon are involved in the process. We cloned and expressed the spoVAC gene in Escherichia coli and characterized the SpoVAC protein. We show that SpoVAC protects E. coli against osmotic downshift, suggesting that it might act as a mechanosensitive channel. Purified SpoVAC was reconstituted in unilamellar lipid vesicles to determine the gating mechanism and pore properties of the protein. By means of a fluorescence-dequenching assay, we show that SpoVAC is activated upon insertion into the membrane of the amphiphiles lysoPC and dodecylamine. Patch clamp experiments on E. coli giant spheroplast as well as giant unilamellar vesicles (GUVs) containing SpoVAC show that the protein forms transient pores with main conductance values of about 0.15 and 0.1 nS respectively. Overall, our data indicate that SpoVAC acts as a mechanosensitive channel and has properties that would allow the release of Ca-DPA and amino acids during germination of the spore.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Esporas Bacterianas/fisiología , Bacillus subtilis/genética , Clonación Molecular , Escherichia coli/genética , Expresión Génica , Activación del Canal Iónico , Fenómenos Mecánicos , Esporas Bacterianas/genética
3.
FASEB J ; 28(10): 4292-302, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24958207

RESUMEN

One of the best-studied mechanosensitive channels is the mechanosensitive channel of large conductance (MscL). MscL senses tension in the membrane evoked by an osmotic down shock and directly couples it to large conformational changes leading to the opening of the channel. Spectroscopic techniques offer unique possibilities to monitor these conformational changes if it were possible to generate tension in the lipid bilayer, the native environment of MscL, during the measurements. To this end, asymmetric insertion of l-α-lysophosphatidylcholine (LPC) into the lipid bilayer has been effective; however, how LPC activates MscL is not fully understood. Here, the effects of LPC on tension-sensitive mutants of a bacterial MscL and on MscL homologs with different tension sensitivities are reported, leading to the conclusion that the mode of action of LPC is different from that of applied tension. Our results imply that LPC shifts the free energy of gating by interfering with MscL-membrane coupling. Furthermore, we demonstrate that the fine-tuned addition of LPC can be used for controlled activation of MscL in spectroscopic studies.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Lisofosfatidilcolinas/metabolismo , Secuencia de Aminoácidos , Proteínas de Escherichia coli/química , Canales Iónicos/química , Membrana Dobles de Lípidos/metabolismo , Mecanotransducción Celular , Datos de Secuencia Molecular
4.
Proc Natl Acad Sci U S A ; 109(32): 12944-9, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22826215

RESUMEN

Mechanosensitive (MS) ion channels are membrane proteins that detect and respond to membrane tension in all branches of life. In bacteria, MS channels prevent cells from lysing upon sudden hypoosmotic shock by opening and releasing solutes and water. Despite the importance of MS channels and ongoing efforts to explain their functioning, the molecular mechanism of MS channel gating remains elusive and controversial. Here we report a method that allows single-subunit resolution for manipulating and monitoring "mechanosensitive channel of large conductance" from Escherichia coli. We gradually changed the hydrophobicity of the pore constriction in this homopentameric protein by modifying a critical pore residue one subunit at a time. Our experimental results suggest that both channel opening and closing are initiated by the transmembrane 1 helix of a single subunit and that the participation of each of the five identical subunits in the structural transitions between the closed and open states is asymmetrical. Such a minimal change in the pore environment seems ideal for a fast and energy-efficient response to changes in the membrane tension.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico/fisiología , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Ingeniería de Proteínas/métodos , Subunidades de Proteína/fisiología , Proteínas de Escherichia coli/aislamiento & purificación , Fluorescencia , Canales Iónicos/aislamiento & purificación , Liposomas/metabolismo , Técnicas de Placa-Clamp , Subunidades de Proteína/aislamiento & purificación
5.
Eur Biophys J ; 43(2-3): 97-104, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24526306

RESUMEN

Patch clamp electrophysiology is the main technique to study mechanosensitive ion channels (MSCs), however, conventional patch clamping is laborious and success and output depends on the skills of the operator. Even though automated patch systems solve these problems for other ion channels, they could not be applied to MSCs. Here, we report on activation and single channel analysis of a bacterial mechanosensitive ion channel using an automated patch clamp system. With the automated system, we could patch not only giant unilamellar liposomes but also giant Escherichia coli (E. coli) spheroplasts. The tension sensitivity and channel kinetics data obtained in the automated system were in good agreement with that obtained from the conventional patch clamp. The findings will pave the way to high throughput fundamental and drug screening studies on mechanosensitive ion channels.


Asunto(s)
Automatización de Laboratorios/métodos , Proteínas de Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Técnicas de Placa-Clamp/métodos , Escherichia coli/metabolismo , Esferoplastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA