Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 70(5): 971-982.e6, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29804828

RESUMEN

The conserved RNA-binding protein ProQ has emerged as the centerpiece of a previously unknown third large network of post-transcriptional control in enterobacteria. Here, we have used in vivo UV crosslinking and RNA sequencing (CLIP-seq) to map hundreds of ProQ binding sites in Salmonella enterica and Escherichia coli. Our analysis of these binding sites, many of which are conserved, suggests that ProQ recognizes its cellular targets through RNA structural motifs found in small RNAs (sRNAs) and at the 3' end of mRNAs. Using the cspE mRNA as a model for 3' end targeting, we reveal a function for ProQ in protecting mRNA against exoribonucleolytic activity. Taken together, our results underpin the notion that ProQ governs a post-transcriptional network distinct from those of the well-characterized sRNA-binding proteins, CsrA and Hfq, and suggest a previously unrecognized, sRNA-independent role of ProQ in stabilizing mRNAs.


Asunto(s)
Regiones no Traducidas 3' , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Procesamiento de Término de ARN 3' , Estabilidad del ARN , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Salmonella enterica/metabolismo , Sitios de Unión , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Exorribonucleasas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Unión Proteica , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Mensajero/química , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Salmonella enterica/genética , Relación Estructura-Actividad
2.
Mol Cell ; 69(5): 893-905.e7, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499139

RESUMEN

Cas9 nucleases naturally utilize CRISPR RNAs (crRNAs) to silence foreign double-stranded DNA. While recent work has shown that some Cas9 nucleases can also target RNA, RNA recognition has required nuclease modifications or accessory factors. Here, we show that the Campylobacter jejuni Cas9 (CjCas9) can bind and cleave complementary endogenous mRNAs in a crRNA-dependent manner. Approximately 100 transcripts co-immunoprecipitated with CjCas9 and generally can be subdivided through their base-pairing potential to the four crRNAs. A subset of these RNAs was cleaved around or within the predicted binding site. Mutational analyses revealed that RNA binding was crRNA and tracrRNA dependent and that target RNA cleavage required the CjCas9 HNH domain. We further observed that RNA cleavage was PAM independent, improved with greater complementarity between the crRNA and the RNA target, and was programmable in vitro. These findings suggest that C. jejuni Cas9 is a promiscuous nuclease that can coordinately target both DNA and RNA.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiología , Campylobacter jejuni/enzimología , Estabilidad del ARN/fisiología , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Proteína 9 Asociada a CRISPR/genética , Campylobacter jejuni/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Dominios Proteicos , ARN Bacteriano/genética , ARN Mensajero/genética
3.
Nucleic Acids Res ; 52(5): 2323-2339, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38142457

RESUMEN

The RNA binding protein Hfq has a central role in the post-transcription control of gene expression in many bacteria. Numerous studies have mapped the transcriptome-wide Hfq-mediated RNA-RNA interactions in growing bacteria or bacteria that have entered short-term growth-arrest. To what extent post-transcriptional regulation underpins gene expression in growth-arrested bacteria remains unknown. Here, we used nitrogen (N) starvation as a model to study the Hfq-mediated RNA interactome as Escherichia coli enter, experience, and exit long-term growth arrest. We observe that the Hfq-mediated RNA interactome undergoes extensive changes during N starvation, with the conserved SdsR sRNA making the most interactions with different mRNA targets exclusively in long-term N-starved E. coli. Taking a proteomics approach, we reveal that in growth-arrested cells SdsR influences gene expression far beyond its direct mRNA targets. We demonstrate that the absence of SdsR significantly compromises the ability of the mutant bacteria to recover growth competitively from the long-term N-starved state and uncover a conserved post-transcriptional regulatory axis which underpins this process.


Asunto(s)
Proteínas de Escherichia coli , ARN Pequeño no Traducido , Escherichia coli/metabolismo , ARN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , ARN Mensajero/metabolismo , Bacterias/genética , ARN Pequeño no Traducido/metabolismo , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo
4.
EMBO Rep ; 23(9): e55432, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35856391

RESUMEN

The P-TEFb complex promotes transcription elongation by releasing paused RNA polymerase II. P-TEFb itself is known to be inactivated through binding to the non-coding RNA 7SK but there is only limited information about mechanisms regulating their association. Here, we show that cells deficient in the RNA-binding protein hnRNP R, a known 7SK interactor, exhibit increased transcription due to phosphorylation of RNA polymerase II. Intriguingly, loss of hnRNP R promotes the release of P-TEFb from 7SK, accompanied by enhanced hnRNP A1 binding to 7SK. Additionally, we found that hnRNP R interacts with BRD4, and that hnRNP R depletion increases BRD4 binding to the P-TEFb component CDK9. Finally, CDK9 is stabilized upon loss of hnRNP R and its association with Cyclin K is enhanced. Together, our results indicate that hnRNP R negatively regulates transcription by modulating the activity and stability of the P-TEFb complex, exemplifying the multimodal regulation of P-TEFb by an RNA-binding protein.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas , Proteínas Nucleares , Factor B de Elongación Transcripcional Positiva , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Largo no Codificante , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
5.
Nucleic Acids Res ; 49(16): 9508-9525, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34403463

RESUMEN

CRISPR-Cas systems provide bacteria with adaptive immunity against phages and plasmids; however, pathways regulating their activity are not well defined. We recently developed a high-throughput genome-wide method (SorTn-seq) and used this to uncover CRISPR-Cas regulators. Here, we demonstrate that the widespread Rsm/Csr pathway regulates the expression of multiple CRISPR-Cas systems in Serratia (type I-E, I-F and III-A). The main pathway component, RsmA (CsrA), is an RNA-binding post-transcriptional regulator of carbon utilisation, virulence and motility. RsmA binds cas mRNAs and suppresses type I and III CRISPR-Cas interference in addition to adaptation by type I systems. Coregulation of CRISPR-Cas and flagella by the Rsm pathway allows modulation of adaptive immunity when changes in receptor availability would alter susceptibility to flagella-tropic phages. Furthermore, we show that Rsm controls CRISPR-Cas in other genera, suggesting conservation of this regulatory strategy. Finally, we identify genes encoding RsmA homologues in phages, which have the potential to manipulate the physiology of host bacteria and might provide an anti-CRISPR activity.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas/genética , Serratia/genética , Transducción de Señal/genética , Inmunidad Adaptativa/genética , Bacteriófagos/genética , Bacteriófagos/patogenicidad , Flagelos/genética , Regulación Bacteriana de la Expresión Génica/genética , Plásmidos/genética , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , Proteínas de Unión al ARN , Proteínas Represoras , Virulencia/genética
6.
Brain Behav Immun ; 101: 194-210, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032575

RESUMEN

BACKGROUND: Antigen-specific neuroinflammation and neurodegeneration are characteristic for neuroimmunological diseases. In Parkinson's disease (PD) pathogenesis, α-synuclein is a known culprit. Evidence for α-synuclein-specific T cell responses was recently obtained in PD. Still, a causative link between these α-synuclein responses and dopaminergic neurodegeneration had been lacking. We thus addressed the functional relevance of α-synuclein-specific immune responses in PD in a mouse model. METHODS: We utilized a mouse model of PD in which an Adeno-associated Vector 1/2 serotype (AAV1/2) expressing human mutated A53T-α-Synuclein was stereotactically injected into the substantia nigra (SN) of either wildtype C57BL/6 or Recombination-activating gene 1 (RAG1)-/- mice. Brain, spleen, and lymph node tissues from different time points following injection were then analyzed via FACS, cytokine bead assay, immunohistochemistry and RNA-sequencing to determine the role of T cells and inflammation in this model. Bone marrow transfer from either CD4+/CD8-, CD4-/CD8+, or CD4+/CD8+ (JHD-/-) mice into the RAG-1-/- mice was also employed. In addition to the in vivo studies, a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay was utilized. RESULTS: AAV-based overexpression of pathogenic human A53T-α-synuclein in dopaminergic neurons of the SN stimulated T cell infiltration. RNA-sequencing of immune cells from PD mouse brains confirmed a pro-inflammatory gene profile. T cell responses were directed against A53T-α-synuclein-peptides in the vicinity of position 53 (68-78) and surrounding the pathogenically relevant S129 (120-134). T cells were required for α-synuclein-induced neurodegeneration in vivo and in vitro, while B cell deficiency did not protect from dopaminergic neurodegeneration. CONCLUSIONS: Using T cell and/or B cell deficient mice and a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay, we confirmed in vivo and in vitro that pathogenic α-synuclein peptide-specific T cell responses can cause dopaminergic neurodegeneration and thereby contribute to PD-like pathology.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Modelos Animales de Enfermedad , Dopamina , Neuronas Dopaminérgicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Parkinson/patología , ARN , Sustancia Negra/metabolismo , Linfocitos T/metabolismo , alfa-Sinucleína/metabolismo
7.
EMBO J ; 35(9): 991-1011, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27044921

RESUMEN

The molecular roles of many RNA-binding proteins in bacterial post-transcriptional gene regulation are not well understood. Approaches combining in vivo UV crosslinking with RNA deep sequencing (CLIP-seq) have begun to revolutionize the transcriptome-wide mapping of eukaryotic RNA-binding protein target sites. We have applied CLIP-seq to chart the target landscape of two major bacterial post-transcriptional regulators, Hfq and CsrA, in the model pathogen Salmonella Typhimurium. By detecting binding sites at single-nucleotide resolution, we identify RNA preferences and structural constraints of Hfq and CsrA during their interactions with hundreds of cellular transcripts. This reveals 3'-located Rho-independent terminators as a universal motif involved in Hfq-RNA interactions. Additionally, Hfq preferentially binds 5' to sRNA-target sites in mRNAs, and 3' to seed sequences in sRNAs, reflecting a simple logic in how Hfq facilitates sRNA-mRNA interactions. Importantly, global knowledge of Hfq sites significantly improves sRNA-target predictions. CsrA binds AUGGA sequences in apical loops and targets many Salmonella virulence mRNAs. Overall, our generic CLIP-seq approach will bring new insights into post-transcriptional gene regulation by RNA-binding proteins in diverse bacterial species.


Asunto(s)
Proteína de Factor 1 del Huésped/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Salmonella typhimurium/enzimología , Sitios de Unión , Unión Proteica , Rayos Ultravioleta
8.
Int J Mol Sci ; 21(2)2020 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31940827

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is known to overexpress a variety of receptor tyrosine kinases, such as the HGF receptor Met. Like other malignancies, HNSCC involves a mutual interaction between the tumor cells and surrounding tissues and cells. We hypothesized that activation of HGF/Met signaling in HNSCC influences glucose metabolism and therefore substantially changes the tumor microenvironment. To determine the effect of HGF, we submitted three established HNSCC cell lines to mRNA sequencing. Dynamic changes in glucose metabolism were measured in real time by an extracellular flux analyzer. As expected, the cell lines exhibited different levels of Met and responded differently to HGF stimulation. As confirmed by mRNA sequencing, the level of Met expression was associated with the number of upregulated HGF-dependent genes. Overall, Met stimulation by HGF leads to increased glycolysis, presumably mediated by higher expression of three key enzymes of glycolysis. These effects appear to be stronger in Methigh-expressing HNSCC cells. Collectively, our data support the hypothesized role of HGF/Met signaling in metabolic reprogramming of HNSCC.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Reprogramación Celular , Glucólisis , Neoplasias de Cabeza y Cuello/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/genética , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-met/genética
9.
Cancer ; 125(4): 586-600, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30561760

RESUMEN

BACKGROUND: Increasing knowledge of cancer genomes has triggered the development of specific targeted inhibitors, thus providing a valuable therapeutic pool. METHODS: In this report, the authors analyze the presence of targetable alterations in 136 tumor samples from 92 patients with melanoma using a comprehensive approach based on targeted DNA sequencing and supported by RNA and protein analysis. Three topics of high clinical relevance are addressed: the identification of rare, activating alterations; the detection of patient-specific, co-occurring single nucleotide variants (SNVs) and copy number variations (CNVs) in parallel pathways; and the presence of cancer-relevant germline mutations. RESULTS: The analysis of patient-matched blood and tumor samples was done with a custom-designed gene panel that was enriched for genes from clinically targetable pathways. To detect alterations with high therapeutic relevance for patients with unknown driver mutations, genes that are untypical for melanoma also were included. Among all patients, CNVs were identified in one-third of samples and contained amplifications of druggable kinases, such as CDK4, ERBB2, and KIT. Considering SNVs and CNVs, 60% of patients with metastases exhibited co-occurring activations of at least 2 pathways, thus providing a rationale for individualized combination therapies. Unexpectedly, 9% of patients carry potentially protumorigenic germline mutations frequently affecting receptor tyrosine kinases. Remarkably two-thirds of BRAF/NRAS wild-type melanomas harbor activating mutations or CNVs in receptor tyrosine kinases. CONCLUSIONS: The results indicate that the integrated analysis of SNVs, CNVs, and germline mutations reveals new druggable targets for combination tumor therapy.


Asunto(s)
Biomarcadores de Tumor/genética , GTP Fosfohidrolasas/genética , Regulación Neoplásica de la Expresión Génica , Melanoma/patología , Proteínas de la Membrana/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/patología , Estudios de Casos y Controles , Quinasa 4 Dependiente de la Ciclina/genética , Variaciones en el Número de Copia de ADN , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Melanoma/genética , Pronóstico , Proteínas Proto-Oncogénicas c-kit/genética , Receptor ErbB-2/genética , Neoplasias Cutáneas/genética
10.
J Biol Chem ; 292(5): 1934-1950, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27974459

RESUMEN

RNA degradation is crucial for regulating gene expression in all organisms. Like the decapping of eukaryotic mRNAs, the conversion of the 5'-terminal triphosphate of bacterial transcripts to a monophosphate can trigger RNA decay by exposing the transcript to attack by 5'-monophosphate-dependent ribonucleases. In both biological realms, this deprotection step is catalyzed by members of the Nudix hydrolase family. The genome of the gastric pathogen Helicobacter pylori, a Gram-negative epsilonproteobacterium, encodes two proteins resembling Nudix enzymes. Here we present evidence that one of them, HP1228 (renamed HpRppH), is an RNA pyrophosphohydrolase that triggers RNA degradation in H. pylori, whereas the other, HP0507, lacks such activity. In vitro, HpRppH converts RNA 5'-triphosphates and diphosphates to monophosphates. It requires at least two unpaired nucleotides at the 5' end of its substrates and prefers three or more but has only modest sequence preferences. The influence of HpRppH on RNA degradation in vivo was examined by using RNA-seq to search the H. pylori transcriptome for RNAs whose 5'-phosphorylation state and cellular concentration are governed by this enzyme. Analysis of cDNA libraries specific for transcripts bearing a 5'-triphosphate and/or monophosphate revealed at least 63 potential HpRppH targets. These included mRNAs and sRNAs, several of which were validated individually by half-life measurements and quantification of their 5'-terminal phosphorylation state in wild-type and mutant cells. These findings demonstrate an important role for RppH in post-transcriptional gene regulation in pathogenic Epsilonproteobacteria and suggest a possible basis for the phenotypes of H. pylori mutants lacking this enzyme.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Helicobacter pylori/metabolismo , Estabilidad del ARN/fisiología , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ácido Anhídrido Hidrolasas/genética , Proteínas Bacterianas/genética , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , ARN Bacteriano/genética
11.
Methods ; 86: 89-101, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26091613

RESUMEN

The global mapping of transcription boundaries is a key step in the elucidation of the full complement of transcriptional features of an organism. It facilitates the annotation of operons and untranslated regions as well as novel transcripts, including cis- and trans-encoded small RNAs (sRNAs). So called RNA sequencing (RNA-seq) based on deep sequencing of cDNAs has greatly facilitated transcript mapping with single nucleotide resolution. However, conventional RNA-seq approaches typically cannot distinguish between primary and processed transcripts. Here we describe the recently developed differential RNA-seq (dRNA-seq) approach, which facilitates the annotation of transcriptional start sites (TSS) based on deep sequencing of two differentially treated cDNA library pairs, with one library being enriched for primary transcripts. Using the human pathogen Helicobacter pylori as a model organism, we describe the application of dRNA-seq together with an automated TSS annotation approach for generation of a genome-wide TSS map in bacteria. Besides a description of transcriptome and regulatory features that can be identified by this approach, we discuss the impact of different library preparation protocols and sequencing platforms as well as manual and automated TSS annotation. Moreover, we have set up an easily accessible online browser for visualization of the H. pylori transcriptome data from this and our previous H. pylori dRNA-seq study.


Asunto(s)
Helicobacter pylori/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sitio de Iniciación de la Transcripción , Genoma Bacteriano , Helicobacter pylori/patogenicidad , Humanos , Anotación de Secuencia Molecular , Transcriptoma/genética
12.
J Bacteriol ; 197(1): 18-28, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25266388

RESUMEN

While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser.


Asunto(s)
Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , ARN sin Sentido/metabolismo , ARN Bacteriano/metabolismo , Sitio de Iniciación de la Transcripción/fisiología , Mapeo Cromosómico , Escherichia coli/genética , Genoma Bacteriano , ARN sin Sentido/genética , ARN Bacteriano/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma
13.
BMC Bioinformatics ; 15: 122, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24780064

RESUMEN

BACKGROUND: RNA-seq and its variant differential RNA-seq (dRNA-seq) are today routine methods for transcriptome analysis in bacteria. While expression profiling and transcriptional start site prediction are standard tasks today, the problem of identifying transcriptional units in a genome-wide fashion is still not solved for prokaryotic systems. RESULTS: We present RNAseg, an algorithm for the prediction of transcriptional units based on dRNA-seq data. A key feature of the algorithm is that, based on the data, it distinguishes between transcribed and un-transcribed genomic segments. Furthermore, the program provides many different predictions in a single run, which can be used to infer the significance of transcriptional units in a consensus procedure. We show the performance of our method based on a well-studied dRNA-seq data set for Helicobacter pylori. CONCLUSIONS: With our algorithm it is possible to identify operons and 5'- and 3'-UTRs in an automated fashion. This alleviates the need for labour intensive manual inspection and enables large-scale studies in the area of comparative transcriptomics.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Genómica , Helicobacter pylori/genética , Operón , Sitio de Iniciación de la Transcripción , Regiones no Traducidas
14.
Cancer Gene Ther ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039193

RESUMEN

Trk (NTRK) receptor and NTRK gene fusions are oncogenic drivers of a wide variety of tumors. Although Trk receptors are typically activated at the cell surface, signaling of constitutive active Trk and diverse intracellular NTRK fusion oncogenes is barely investigated. Here, we show that a high intracellular abundance is sufficient for neurotrophin-independent, constitutive activation of TrkB kinase domains. In HEK293 cells, constitutive active TrkB kinase and an intracellular NTRK2-fusion oncogene (SQSTM1-NTRK2) reduced actin filopodia dynamics, phosphorylated FAK, and altered the cell morphology. Atypical cellular responses could be mimicked with the intracellular kinase domain, which did not activate the Trk-associated MAPK/ERK pathway. In glioblastoma-like U87MG cells, expression of TrkB or SQSTM1-NTRK2 reduced cell motility and caused drastic changes in the transcriptome. Clinically approved Trk inhibitors or mutating Y705 in the kinase domain, blocked the cellular effects and transcriptome changes. Atypical signaling was also seen for TrkA and TrkC. Moreover, hallmarks of atypical pTrk kinase were found in biopsies of Nestin-positive glioblastoma. Therefore, we suggest Western blot-like immunoassay screening of NTRK-related (brain) tumor biopsies to identify patients with atypical panTrk or phosphoTrk signals. Such patients could be candidates for treatment with NTRK inhibitors such as Larotrectinhib or Entrectinhib.

15.
Hemasphere ; 8(7): e110, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38993727

RESUMEN

Multiple myeloma (MM) is a genetically heterogeneous disease and the management of relapses is one of the biggest clinical challenges. TP53 alterations are established high-risk markers and are included in the current disease staging criteria. KRAS is the most frequently mutated gene affecting around 20% of MM patients. Applying Clonal Competition Assays (CCA) by co-culturing color-labeled genetically modified cell models, we recently showed that mono- and biallelic alterations in TP53 transmit a fitness advantage to the cells. Here, we report a similar dynamic for two mutations in KRAS (G12A and A146T), providing a biological rationale for the high frequency of KRAS and TP53 alterations at MM relapse. Resistance mutations, on the other hand, did not endow MM cells with a general fitness advantage but rather presented a disadvantage compared to the wild-type. CUL4B KO and IKZF1 A152T transmit resistance against immunomodulatory agents, PSMB5 A20T to proteasome inhibition. However, MM cells harboring such lesions only outcompete the culture in the presence of the respective drug. To better prevent the selection of clones with the potential of inducing relapse, these results argue in favor of treatment-free breaks or a switch of the drug class given as maintenance therapy. In summary, the fitness benefit of TP53 and KRAS mutations was not treatment-related, unlike patient-derived drug resistance alterations that may only induce an advantage under treatment. CCAs are suitable models for the study of clonal evolution and competitive (dis)advantages conveyed by a specific genetic lesion of interest, and their dependence on external factors such as the treatment.

16.
iScience ; 25(10): 105175, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36204268

RESUMEN

Climate and land-use changes cause increasing stress to pollinators but the molecular pathways underlying stress responses are poorly understood. Here, we analyzed the transcriptomic response of Bombus lucorum workers to temperature and livestock grazing. Bumblebees sampled along an elevational gradient, and from differently managed grassland sites (livestock grazing vs unmanaged) in the German Alps did not differ in the expression of genes known for thermal stress responses. Instead, metabolic energy production pathways were upregulated in bumblebees sampled in mid- or high elevations or during cool temperatures. Extensive grazing pressure led to an upregulation of genetic pathways involved in immunoregulation and DNA-repair. We conclude that widespread bumblebees are tolerant toward temperature fluctuations in temperate mountain environments. Moderate temperature increases may even release bumblebees from metabolic stress. However, transcriptome responses to even moderate management regimes highlight the completely underestimated complexity of human influence on natural pollinators.

17.
J Clin Med ; 11(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35160204

RESUMEN

BACKGROUND: Treatment options for NAFLD are still limited. Bariatric surgery, such as Roux-en-Y gastric bypass (RYGB), has been shown to improve metabolic and histologic markers of NAFLD. Glucagon-like-peptide-1 (GLP-1) analogues lead to improvements in phase 2 clinical trials. We directly compared the effects of RYGB with a treatment using liraglutide and/or peptide tyrosine tyrosine 3-36 (PYY3-36) in a rat model for early NAFLD. METHODS: Obese male Wistar rats (high-fat diet (HFD)-induced) were randomized into the following treatment groups: RYGB, sham-operation (sham), liraglutide (0.4 mg/kg/day), PYY3-36 (0.1 mg/kg/day), liraglutide+PYY3-36, and saline. After an observation period of 4 weeks, liver samples were histologically evaluated, ELISAs and RNA sequencing + RT-qPCRs were performed. RESULTS: RYGB and liraglutide+PYY3-36 induced a similar body weight loss and, compared to sham/saline, marked histological improvements with significantly less steatosis. However, only RYGB induced significant metabolic improvements (e.g., adiponectin/leptin ratio 18.8 ± 11.8 vs. 2.4 ± 1.2 in liraglutide+PYY3-36- or 1.4 ± 0.9 in sham-treated rats). Furthermore, RNA sequencing revealed a high number of differentially regulated genes in RYGB treated animals only. CONCLUSIONS: The combination therapy of liraglutide+PYY3-36 partly mimics the positive effects of RYGB on weight reduction and on hepatic steatosis, while its effects on metabolic function lack behind RYGB.

18.
Cell Calcium ; 101: 102515, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896701

RESUMEN

How homeostatic ER calcium fluxes shape cellular calcium signals is still poorly understood. Here we used dual-color calcium imaging (ER-cytosol) and transcriptome analysis to link candidates of the calcium toolkit of astrocytes with homeostatic calcium signals. We found molecular and pharmacological evidence that P/Q-type channel Cacna1a contributes to depolarization-dependent calcium entry in astrocytes. For stimulated ER calcium release, the cells express the phospholipase Cb3, IP3 receptors Itpr1 and Itpr2, but no ryanodine receptors (Ryr1-3). After IP3-induced calcium release, Stim1/2 - Orai1/2/3 most likely mediate SOCE. The Serca2 (Atp2a2) is the candidate for refilling of the ER calcium store. The cells highly express adenosine receptor Adora1a for IP3-induced calcium release. Accordingly, adenosine induces fast ER calcium release and subsequent ER calcium oscillations. After stimulation, calcium refilling of the ER depends on extracellular calcium. In response to SOCE, astrocytes show calcium-induced calcium release, notably even after ER calcium was depleted by extracellular calcium removal in unstimulated cells. In contrast, spontaneous ER-cytosol calcium oscillations were not fully dependent on extracellular calcium, as ER calcium oscillations could persist over minutes in calcium-free solution. Additionally, cell-autonomous calcium oscillations show a second-long spatial and temporal delay in the signal dynamics of ER and cytosolic calcium. Our data reveal a rather strong contribution of homeostatic calcium fluxes in shaping IP3-induced and calcium-induced calcium release as well as spatiotemporal components of intracellular calcium oscillations.


Asunto(s)
Señalización del Calcio , Calcio , Astrocitos/metabolismo , Calcio/metabolismo , Citosol/metabolismo , Homeostasis , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo
19.
Nat Microbiol ; 7(4): 530-541, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35314780

RESUMEN

CRISPR-Cas systems store fragments of foreign DNA, called spacers, as immunological recordings used to combat future infections. Of the many spacers stored in a CRISPR array, the most recent are known to be prioritized for immune defence. However, the underlying mechanism remains unclear. Here we show that the leader region upstream of CRISPR arrays in CRISPR-Cas9 systems enhances CRISPR RNA (crRNA) processing from the newest spacer, prioritizing defence against the matching invader. Using the CRISPR-Cas9 system from Streptococcus pyogenes as a model, we found that the transcribed leader interacts with the conserved repeats bordering the newest spacer. The resulting interaction promotes transactivating crRNA (tracrRNA) hybridization with the second of the two repeats, accelerating crRNA processing. Accordingly, disruption of this structure reduces the abundance of the associated crRNA and immune defence against targeted plasmids and bacteriophages. Beyond the S. pyogenes system, bioinformatics analyses revealed that leader-repeat structures appear across CRISPR-Cas9 systems. CRISPR-Cas systems thus possess an RNA-based mechanism to prioritize defence against the most recently encountered invaders.


Asunto(s)
Bacteriófagos , Proteínas Asociadas a CRISPR , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ARN/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
20.
Cell Rep ; 34(5): 108722, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33535041

RESUMEN

A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Pequeño no Traducido/metabolismo , Salmonella typhimurium/patogenicidad , Virulencia/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA