Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem Biophys Res Commun ; 459(1): 107-12, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25712518

RESUMEN

The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6-8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8-15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed.


Asunto(s)
Antígenos de Protozoos/química , Proteínas Protozoarias/química , Antígenos de Protozoos/genética , Dicroismo Circular , Luz , Microscopía Electrónica de Transmisión , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Dispersión de Radiación , Solubilidad
2.
Cell Rep ; 13(10): 2273-86, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26628378

RESUMEN

Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.


Asunto(s)
Antígenos de Protozoos/inmunología , Linfocitos T CD8-positivos/inmunología , Interacciones Huésped-Parásitos/inmunología , Activación de Linfocitos/inmunología , Proteínas Protozoarias/inmunología , Toxoplasmosis/inmunología , Animales , Presentación de Antígeno/inmunología , Western Blotting , Modelos Animales de Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Endogámicos C57BL , Vacuolas/inmunología
3.
Vet Parasitol ; 180(3-4): 179-90, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21524853

RESUMEN

The protozoan parasite Toxoplasma (T.) gondii is one of the most common zoonotic infectious agents worldwide. Besides its sexual reproduction in cats, T. gondii can also infect a wide spectrum of other warm-blooded animals. These include animals used for human consumption such as pigs or chickens. Nevertheless, the role of turkeys for the epidemiology of T. gondii infections has not been studied thoroughly. We have established a kinetic ELISA (KELA) for the detection of T. gondii-specific IgG antibodies in turkey serum samples. The test is based on the recombinant dense granule antigens GRA7 and GRA8. These proteins were used as an antigen mixture at a concentration of 0.13 µg per well. The overall sensitivity of the assay was between 92.6% and 100% and the specificity ranged from 78.1% to 100%, depending on the method used to calculate these parameters. Using this KELA we examined 1913 turkey serum samples from 14 turkey farms from different areas of Germany. From these sera, 387 produced a signal in the KELA, corresponding to a true seroprevalence of up to 20.2%. The seropositivity rate in individual fattening cycles at individual farms ranged from 0.0% to 77.1%, whereas the rates were highly variable within the individual farms and individual fattening cycles. Consequently, conditions of animal husbandry could not be associated with particular seroprevalence rates. Although seropositivity cannot be linked directly to infectious tissue cysts in the muscle tissue of commercially produced turkey meat, we state that there is a potential risk of being infected by consuming turkey meat products that were not heat treated.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Inmunoglobulina G/sangre , Enfermedades de las Aves de Corral/inmunología , Toxoplasma/inmunología , Toxoplasmosis Animal/inmunología , Pavos , Animales , Antígenos de Protozoos/inmunología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Masculino , Proteínas Protozoarias/inmunología , Proteínas Recombinantes , Sensibilidad y Especificidad , Toxoplasmosis Animal/sangre
4.
Int J Parasitol ; 40(11): 1325-34, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20420842

RESUMEN

How eukaryotic pathogens export and sort membrane-bound proteins destined for host-cell compartments is still poorly understood. The dense granules of the intracellular protozoan Toxoplasma gondii constitute an unusual secretory pathway that allows soluble export of the GRA proteins which become membrane-associated within the parasite replicative vacuole. This process relies on both the segregation of the proteins routed to the dense granules from those destined to the parasite plasma membrane and on the sorting of the secreted GRA proteins to their proper final membranous system. Here, we provide evidence that the soluble trafficking of GRA6 to the dense granules relies on the N-terminal domain of the protein, which is sufficient to prevent GRA6 targeting to the parasite plasma membrane. We also show that the GRA6 N-terminal domain, possibly by interacting with negatively charged lipids, is fundamental for proper GRA6 association with the vacuolar membranous network of nanotubes. These results support our emerging model: sorting of transmembrane GRA proteins to the host cell vacuole is mainly driven by the dual role of their N-terminal hydrophilic domain and is compartmentally regulated.


Asunto(s)
Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Membrana Celular/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Vacuolas/metabolismo , Antígenos de Protozoos/genética , Membrana Celular/química , Membrana Celular/genética , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/parasitología , Humanos , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Protozoarias/genética , Toxoplasma/química , Toxoplasma/genética , Toxoplasmosis/parasitología
5.
Int J Parasitol ; 39(3): 299-306, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18840447

RESUMEN

The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.


Asunto(s)
Membranas Intracelulares/metabolismo , Microtúbulos/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/parasitología , Vacuolas/metabolismo , Animales , Antígenos de Protozoos/metabolismo , Línea Celular , ADN Protozoario/análisis , ADN Protozoario/genética , Técnica del Anticuerpo Fluorescente , Interacciones Huésped-Parásitos , Humanos , Membranas Intracelulares/parasitología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Transporte de Proteínas , Proteínas Protozoarias/genética , Análisis de Secuencia de Proteína , Toxoplasma/ultraestructura , Toxoplasmosis/metabolismo , Vacuolas/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA