Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Am Chem Soc ; 146(14): 9836-9850, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38545903

RESUMEN

The electronic structure and geometrical organization of aqueous Cu2+ have been investigated by using X-ray photoelectron spectroscopy (XPS) at the Cu L-edge combined with state-of-the-art ab initio molecular dynamics and a quantum molecular approach designed to simulate the Cu 2p X-ray photoelectron spectrum. The calculations offer a comprehensive insight into the origin of the main peak and satellite features. It is illustrated how the energy drop of the Cu 3d levels (≈7 eV) following the creation of the Cu 2p core hole switches the nature of the highest singly occupied molecular orbitals (MOs) from the dominant metal to the dominant MO nature of water. It is particularly revealed how the repositioning of the Cu 3d levels induces the formation of new bonding (B) and antibonding (AB) orbitals, from which shakeup mechanisms toward the relaxed H-SOMO operate. As highlighted in this study, the appearance of the shoulder near the main peak corresponds to the characteristic signature of shakeup intraligand (1a1 → H-SOMO(1b1)) excitations in water, providing insights into the average dipole moment distribution (≈36°) of the first-shell water molecules surrounding the metal ion and its direct impact on the broadening of the satellite. It is also revealed that the main satellite at 8 eV from the main peak corresponds to (metal/1b2 → H-SOMO(1b1) of water) excitations due to a bonding/antibonding (B/AB) interaction of Cu 3d levels with the deepest valence O2p/H1s 1b2 orbitals of water. This finding underscores the sensitivity of XPS to the electronic structure and orientation of the nearest water molecules around the central ion.

2.
Chemphyschem ; 25(1): e202300551, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37991256

RESUMEN

The sustainable development encompasses the search for new materials for energy storage, gas capture, separation, and solvents in industrial processes that can substitute conventional ones in an efficient and clean manner. Ionic liquids (ILs) emerged and have been advanced as alternative materials for such applications, but an obstacle is their hygroscopicity and the effects on their physical properties in the presence of humidity. Several industrial processes depend on the aqueous interfacial properties, and the main focus of this work is the water/IL interface. The behavior of the aqueous ionic liquids at the water-vacuum interface is representative for their water interfacial properties. Using X-ray photoelectron spectroscopy in combination with molecular dynamics simulations we investigate four aqueous IL systems, and provide molecular level insight on the interfacial behaviour of the ionic liquids, such as ion-pair formation, orientation and surface concentration. We find that ionic liquids containing a chloride anion have a lowered surface enrichment due to the low surface propensity of chloride. In contrast, the ionic liquids containing a bistriflimide anion are extremely surface-enriched due to cooperative surface propensity between the cations and anions, forming a two-dimensional ionic liquid on the water surface at low concentrations.

3.
Phys Chem Chem Phys ; 26(2): 770-779, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37888897

RESUMEN

The present study investigates the photofragmentation behavior of iodine-enhanced nitroimidazole-based radiosensitizer model compounds in their protonated form using near-edge X-ray absorption mass spectrometry and quantum mechanical calculations. These molecules possess dual functionality: improved photoabsorption capabilities and the ability to generate species that are relevant to cancer sensitization upon photofragmentation. Four samples were investigated by scanning the generated fragments in the energy regions around C 1s, N 1s, O 1s, and I 3d-edges with a particular focus on NO2+ production. The experimental summed ion yield spectra are explained using the theoretical near-edge X-ray absorption fine structure spectrum based on density functional theory. Born-Oppenheimer-based molecular dynamics simulations were performed to investigate the fragmentation processes.

4.
Phys Chem Chem Phys ; 26(11): 8879-8890, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426309

RESUMEN

Radiation therapy uses ionizing radiation to break chemical bonds in cancer cells, thereby causing DNA damage and leading to cell death. The therapeutic effectiveness can be further increased by making the tumor cells more sensitive to radiation. Here, we investigate the role of the initial halogen atom core hole on the photofragmentation dynamics of 2-bromo-5-iodo-4-nitroimidazole, a potential bifunctional radiosensitizer. Bromine and iodine atoms were included in the molecule to increase the photoionization cross-section of the radiosensitizer at higher photon energies. The fragmentation dynamics of the molecule was studied experimentally in the gas phase using photoelectron-photoion-photoion coincidence spectroscopy and computationally using Born-Oppenheimer molecular dynamics. We observed significant changes between shallow core (I 4d, Br 3d) and deep core (I 3d) ionization in fragment formation and their kinetic energies. Despite the fact, that the ions ejected after deep core ionization have higher kinetic energies, we show that in a cellular environment, the ion spread is not much larger, keeping the damage well-localized.


Asunto(s)
Yodo , Nitroimidazoles , Rayos Ultravioleta , Fotones , Radiación Ionizante
5.
Acc Chem Res ; 55(23): 3285-3293, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36472092

RESUMEN

The gas-liquid interface of water is environmentally relevant due to the abundance of aqueous aerosol particles in the atmosphere. Aqueous aerosols often contain a significant fraction of organics. As aerosol particles are small, surface effects are substantial but not yet well understood. One starting point for studying the surface of aerosols is to investigate the surface of aqueous solutions. We review here studies of the surface composition of aqueous solutions using liquid-jet photoelectron spectroscopy in combination with theoretical simulations. Our focus is on model systems containing two functional groups, the carboxylic group and the amine group, which are both common in atmospheric organics. For alkanoic carboxylic acids and alkyl amines, we find that the surface propensity of such amphiphiles can be considered to be a balance between the hydrophilic interactions of the functional group and the hydrophobic interactions of the alkyl chain. For the same chain length, the neutral alkyl amine has a lower surface propensity than the neutral alkanoic carboxylic acid, whereas the surface propensity of the corresponding alkyl ammonium ion is higher than that of the alkanoic carboxylate ion. This different propensity leads to a pH-dependent surface composition which differs from the bulk, with the neutral forms having a much higher surface propensity than the charged ones. In aerosols, alkanoic carboxylic acids and alkyl amines are often found together. For such mixed systems, we find that the oppositely charged molecular ions form ion pairs at the surface. This cooperative behavior leads to a more organic-rich and hydrophobic surface than would be expected in a wide, environmentally relevant pH range. Amino acids contain a carboxylic and an amine group, and amino acids of biological origin are found in aerosols. Depending on the side group, we observe surface propensity ranging from surface-depleted to enriched by a factor of 10. Cysteine contains one more titratable group, which makes it exhibit more complex behavior, with some protonation states found only at the surface and not in the bulk. Moreover, the presence of molecular ions at the surface is seen to affect the distribution of inorganic ions. As the charge of the molecular ions changes with protonation, the effects on the inorganic ions also exhibit a pH dependence. Our results show that for these systems the surface composition differs from the bulk and changes with pH and that the results obtained for single-component solutions may be modified by ion-ion interactions in the case of mixed solutions.


Asunto(s)
Aminas , Ácidos Carboxílicos , Ácidos Carboxílicos/química , Aminas/química , Aminoácidos , Agua/química , Aerosoles , Iones
6.
Acc Chem Res ; 55(21): 3080-3087, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251058

RESUMEN

By combining results and analysis from cylindrical microjet photoelectron spectroscopy (cMJ-PES) and theoretical simulations, we unravel the microscopic properties of ethanol-water solutions with respect to structure and intermolecular bonding patterns following the full concentration scale from 0 to 100% ethanol content. In particular, we highlight the salient differences between bulk and surface. Like for the pure water and alcohol constituents, alcohol-water mixtures have attracted much interest in applications of X-ray spectroscopies owing to their potential of combining electronic and geometric structure probing. The water mixtures of the two simplest alcohols, methanol and ethanol, have generated particular attention due to their delicate hydrogen bonding networks that underlie their structural and thermodynamic properties. Macroscopically ethanol-water seems to mix very well, however microscopically this is not true. The aberrant thermodynamics of water-alcohol mixtures have been suggested to be caused by energy differences of hydrogen bonding between water-water, alcohol-alcohol and alcohol-water molecules. These networks may perturb the local character of the interaction between X-rays and matter, calling for analysis that go beyond the normally applied local selection and building block rules and that can combine the effects of light-matter, intra- and intermolecular interactions. However, despite decades of ongoing research there are still controversies of the precise nature of hydrogen bonding networks that underlie the mixing of these simple molecules. Our combined analysis indicates that at low concentration ethanol molecules form a film at the surface since ethanol at the surface can expose its hydrophobic part to the vacuum retaining its two (or three) possible hydrogen bonds, while water at the surface cannot retain all its four possible hydrogen bonds. Thus, ethanol at the surface becomes energetically favorable. Ethanol molecules show a tilting angle variation of the C-C axis with respect to the surface normal as large as 60° at very low concentration. In bulk, around ca. ten %, the ethanol oxygen atoms tend to make a third acceptor hydrogen bond to water molecules. At ca. 20 %, there is a U-shaped change in the CH3 to CH2OH binding energy (BE) shift indicating the presence of ring-like agglomerates called clathrate structures. At the surface, between 5 and 25%, ethanol forms a closely packed layer with the smallest C-C tilting angle variation down to ∼20°. Above 25% and below the azeotrope at the surface, ethanol shows an increase in the tilting angle variation, while at very high ethanol concentrations water tends to move to the surface so giving a microscopic explanation of the azeotrope effect. This migration is connected to the presence of longer (shorter) ethanol chains in the bulk (surface). A brief comparison with discussions and predictions from other spectroscopic techniques is also given. We emphasize the execution of an integrated approach that combines molecular structural dynamics with quantum predictions of the core electronic chemical shift, so establishing a protocol with considerable interpretative as well as predictive power for cMJ-PES measurements. We believe that this protocol can valorize cMJ-PES for studies of properties of other alcohol mixtures as well as of binary solutions in general.


Asunto(s)
Etanol , Agua , Espectroscopía de Fotoelectrones , Etanol/química , Enlace de Hidrógeno , Agua/química , Termodinámica
7.
J Phys Chem A ; 127(6): 1395-1401, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36749682

RESUMEN

Intramolecular hydrogen transfer, a reaction where donor and acceptor sites of a hydrogen atom are part of the same molecule, is a ubiquitous reaction in biochemistry and organic synthesis. In this work, we report hydronium ion (H3O+) production from aminobenzoic acid (ABA) after core-level ionization with soft X-ray synchrotron radiation. The formation of H3O+ during the fragmentation requires that at least two hydrogen atoms migrate to one of the oxygen atoms within the molecule. The comparison of two structural isomers, ortho- and meta-ABA, revealed that the production of H3O+ depends strongly on the structure of the molecule, the ortho-isomer being much more prone to produce H3O+. The isomer-dependency suggests that the amine group acts as a donor in the hydrogen transfer process. In the case of ortho-ABA, detailed H3O+ production pathways were investigated using photoelectron-photoion-photoion coincidence (PEPIPICO) spectroscopy. It was found that H3O+ can result from a direct two-body dissociation but also from sequential fragmentation processes.

8.
Phys Chem Chem Phys ; 24(42): 26037-26045, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36268753

RESUMEN

Ethanol and water form an azeotropic mixture at an ethanol molecular percentage of ∼91% (∼96% by volume), which prohibits ethanol from being further purified via distillation. Aqueous solutions at different concentrations in ethanol have been studied both experimentally and theoretically. We performed cylindrical micro-jet photoelectron spectroscopy, excited by synchrotron radiation, 70 eV above C1s ionization threshold, providing optimal atomic-scale surface-probing. Large model systems have been employed to simulate, by molecular dynamics, slabs of the aqueous solutions and obtain an atomistic description of both bulk and surface regions. We show how the azeotropic behaviour results from an unexpected concentration-dependence of the surface composition. While ethanol strongly dominates the surface and water is almost completely depleted from the surface for most mixing ratios, the different intermolecular bonding patterns of the two components cause water to penetrate to the surface region at high ethanol concentrations. The addition of surface water increases its relative vapour pressure, giving rise to the azeotropic behaviour.

9.
Phys Chem Chem Phys ; 24(15): 8661-8671, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35356960

RESUMEN

Non-local analogues of Auger decay are increasingly recognized as important relaxation processes in the condensed phase. Here, we explore non-local autoionization, specifically Intermolecular Coulombic Decay (ICD), of a series of aqueous-phase isoelectronic cations following 1s core-level ionization. In particular, we focus on Na+, Mg2+, and Al3+ ions. We unambiguously identify the ICD contribution to the K-edge Auger spectrum. The different strength of the ion-water interactions is manifested by varying intensities of the respective signals: the ICD signal intensity is greatest for the Al3+ case, weaker for Mg2+, and absent for weakly-solvent-bound Na+. With the assistance of ab initio calculations and molecular dynamics simulations, we provide a microscopic understanding of the non-local decay processes. We assign the ICD signals to decay processes ending in two-hole states, delocalized between the central ion and neighbouring water. Importantly, these processes are shown to be highly selective with respect to the promoted water solvent ionization channels. Furthermore, using a core-hole-clock analysis, the associated ICD timescales are estimated to be around 76 fs for Mg2+ and 34 fs for Al3+. Building on these results, we argue that Auger and ICD spectroscopy represents a unique tool for the exploration of intra- and inter-molecular structure in the liquid phase, simultaneously providing both structural and electronic information.

10.
Phys Chem Chem Phys ; 24(11): 7164, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35260872

RESUMEN

Correction for 'The molecular structure of the surface of water-ethanol mixtures' by Johannes Kirschner et al., Phys. Chem. Chem. Phys., 2021, 23, 11568-11578, DOI: 10.1039/D0CP06387H.

11.
J Phys Chem A ; 126(9): 1496-1503, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35213156

RESUMEN

We demonstrate site-specific X-ray induced fragmentation across the sulfur L-edge of protonated cystine, the dimer of the amino acid cysteine. Ion yield NEXAFS were performed in the gas phase using electrospray ionization (ESI) in combination with an ion trap. The interpretation of the sulfur L-edge NEXAFS spectrum is supported by Restricted Open-Shell Configuration Interaction (ROCIS) calculations. The fragmentation pathway of triply charged cystine ions was modeled by Molecular Dynamics (MD) simulations. We have deduced a possible pathway of fragmentation upon excitation and ionization of S 2p electrons. The disulfide bridge breaks for resonant excitation at lower photon energies but remains intact upon higher energy resonant excitation and upon ionization of S 2p. The larger fragments initially formed subsequently break into smaller fragments.


Asunto(s)
Cisteína , Cistina , Cisteína/química , Cistina/química , Electrones , Iones , Espectrometría de Masa por Ionización de Electrospray , Rayos X
12.
Phys Chem Chem Phys ; 23(19): 11568-11578, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33977931

RESUMEN

Mixtures of water and alcohol exhibit an excess surface concentration of alcohol as a result of the amphiphilic nature of the alcohol molecule, which has important consequences for the physico-chemical properties of water-alcohol mixtures. Here we use a combination of intensity vibrational sum-frequency generation (VSFG) spectroscopy, heterodyne-detected VSFG (HD-VSFG), and core-level photoelectron spectroscopy (PES) to investigate the molecular properties of water-ethanol mixtures at the air-liquid interface. We find that increasing the ethanol concentration up to a molar fraction (MF) of 0.1 leads to a steep increase of the surface density of the ethanol molecules, and an increased ordering of the ethanol molecules at the surface. When the ethanol concentration is further increased, the surface density of ethanol remains more or less constant, while the orientation of the ethanol molecules becomes increasingly disordered. The used techniques of PES and VSFG provide complementary information on the density and orientation of ethanol molecules at the surface of water, thus providing new information on the molecular-scale properties of the surface of water-alcohol mixtures over a wide range of compositions. This information is invaluable in understanding the chemical and physical properties of water-alcohol mixtures.

13.
J Chem Phys ; 154(23): 234708, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34241256

RESUMEN

The composition-dependent change in the work-function (WF) of binary silver-potassium nanoparticles has been studied experimentally by synchrotron-based x-ray photoelectron spectroscopy (PES) and theoretically using a microscopic jellium model of metals. The Ag-K particles with different K fractions were produced by letting a beam of preformed Ag particles pass through a volume with K vapor. The PES on a beam of individual non-supported Ag-K nanoparticles created in this way allowed a direct absolute measurement of their WF, avoiding several usual shortcomings of the method. Experimentally, the WF has been found to be very sensitive to K concentration: Already at low exposure, it decreased down to ≈2 eV-below the value of pure K. In the jellium modeling, considered for Ag-K nanoparticles, two principally different adsorption patterns were tested: without and with K diffusion. The experimental and calculation results together suggest that only efficient surface alloying of two metals, whose immiscibility was long-term textbook knowledge, could lead to the observed WF values.

14.
J Chem Phys ; 154(21): 214304, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34240997

RESUMEN

A theoretical and experimental study of the gas phase and liquid acetic acid based on resonant inelastic x-ray scattering (RIXS) spectroscopy is presented. We combine and compare different levels of theory for an isolated molecule for a comprehensive analysis, including electronic and vibrational degrees of freedom. The excitation energy scan over the oxygen K-edge absorption reveals nuclear dynamic effects in the core-excited and final electronic states. The theoretical simulations for the monomer and two different forms of the dimer are compared against high-resolution experimental data for pure liquid acetic acid. We show that the theoretical model based on a dimer describes the hydrogen bond formation in the liquid phase well and that this bond formation sufficiently alters the RIXS spectra, allowing us to trace these effects directly from the experiment. Multimode vibrational dynamics is accounted for in our simulations by using a hybrid time-dependent stationary approach for the quantum nuclear wave packet simulations, showing the important role it plays in RIXS.

15.
Phys Chem Chem Phys ; 22(6): 3264-3272, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-31998901

RESUMEN

Hydrogen bonding leads to the formation of strong, extended intermolecular networks in molecular liquids such as water. However, it is less well-known how robust the network is to environments in which surface formation or confinement effects become prominent, such as in clusters or droplets. Such systems provide a useful way to probe the robustness of the network, since the degree of confinement can be tuned by altering the cluster size, changing both the surface-to-volume ratio and the radius of curvature. To explore the formation of hydrogen bond networks in confined geometries, here we present O 1s Auger spectra of small and large clusters of water, methanol, and dimethyl ether, as well as their deuterated equivalents. The Auger spectra of the clusters and the corresponding macroscopic liquids are compared and evaluated for an isotope effect, which is due to proton dynamics within the lifetime of the core hole (proton-transfer-mediated charge-separation, PTM-CS), and can be linked to the formation of a hydrogen bond network in the system. An isotope effect is observed in water and methanol but not for dimethyl ether, which cannot donate a hydrogen bond at its oxygen site. The isotope effect, and therefore the strength of the hydrogen bond network, is more pronounced in water than in methanol. Its value depends on the average size of the cluster, indicating that confinement effects change proton dynamics in the core ionised excited state.

16.
J Phys Chem A ; 124(2): 422-429, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31833771

RESUMEN

Recent studies on sea spray aerosol indicate an enrichment of Ca2+ in small particles, which are often thought to originate from the very surface of a water body when bubbles burst. One model to explain this observation is the formation of ion pairs between Ca2+(aq) and surface-active organic species. In this study, we have used X-ray photoelectron spectroscopy to probe aqueous salt solutions and artificial sea spray aerosol to study whether ion pairing in the liquid environment also affects the surface composition of dry aerosol. Carboxylic acids were added to the sample solutions to mimic some of the organic compounds present in natural seawater. Our results show that the formation of a core-shell structure governs the surface composition of the aerosol. The core-shell structure contrasts previous observations of the dry sea spray aerosol on substrates. As such, this may indicate that substrates can impact the morphology of the dried aerosol.

17.
Phys Chem Chem Phys ; 21(28): 15478-15486, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31259327

RESUMEN

Complex chemical and biochemical systems are susceptible to damage from ionising radiation. However, questions remain over the extent to which such damage is influenced by the nature of the surrounding chemical environment, which can consist of both hydrophobic and hydrophilic domains. To gain fundamental insight into the first crucial mechanistic steps of radiation damage in such systems, we need to understand the initial radiation response, i.e. dynamics occurring on the same timescale as electronic relaxation, which occur in these different environments. Amphiphilic molecules contain both hydrophobic and hydrophilic domains, but the propensity for charge delocalisation and proton dynamics to occur in these different domains has been largely unexplored so far. Here, we present carbon and oxygen 1s Auger spectra for liquid methanol, one of the simplest amphiphilic molecules, as well as its fully deuterated equivalent d4-methanol, in order to explore X-ray induced charge delocalisation and proton dynamics occurring on the few femtosecond timescale. Unexpectedly, we find a similar propensity for proton dynamics to occur at both the carbon and oxygen site within the lifetime of the core hole. Our results could serve as a model for decay processes that are likely to occur in other more complex amphiphilic systems.


Asunto(s)
Metanol/química , Metanol/efectos de la radiación , Rayos X , Carbono/química , Oxígeno/química , Protones
18.
Phys Chem Chem Phys ; 21(23): 12434-12445, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31143906

RESUMEN

Previous studies have shown that the water-air interface and a number of water molecule layers just below it, the surface region, have significantly different physico-chemical properties, such as lower relative permittivity and density, than bulk water. The properties in the surface region of water favor weakly hydrated species as neutral molecules, while ions requiring strong hydration and shielding of their charge are disfavored. In this study the equilibria NH4+(aq) + RCOO-(aq) ⇌ NH3(aq) + RCOOH(aq) are investigated for R = CnH2n+1, n = 0-8, as open systems, where ammonia and small carboxylic acids in the gas phase above the water surface are removed from the system by a gentle controlled flow of nitrogen to mimic the transport of volatile compounds from water droplets into air. It is shown that this non-equilibrium transport of chemicals can be sufficiently large to cause a change of the chemical content of the aqueous bulk. Furthermore, X-ray photoelectron spectroscopy (XPS) has been used to determine the relative concentration of alkyl carboxylic acids and their conjugated alkyl carboxylates in aqueous surfaces using a micro-jet. These studies confirm that neutral alkyl carboxylic acids are accumulated in the surface region, while charged species, as alkyl carboxylates, are depleted. The XPS studies show also that the hydrophobic alkyl chains are oriented upwards into regions with lower relative permittivity and density, thus perpendicular to the aqueous surface. These combined results show that there are several chemical equilibria between the aqueous bulk and the surface region. The analytical studies show that the release of mainly ammonia is dependent on its concentration in the surface region, as long as the solubility of the carboxylic acid in the surface region is sufficiently high to avoid a precipitation in/on the water-air interface. However, for n-octyl- and n-nonylcarboxylic acid the solubility is sufficiently low to cause precipitation. The combined analytical and surface speciation studies in this work show that the equilibria involving the surface region are fast. The results from this study increase the knowledge about the distribution of chemical species in the surface region at and close to the water-air interface, and the transport of chemicals from water to air in open systems.

19.
Chem Rev ; 116(13): 7698-726, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27232062

RESUMEN

The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.

20.
Phys Chem Chem Phys ; 20(42): 27185-27191, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30339167

RESUMEN

Surface affinity, orientation and ion pairing are investigated in mixed and single solute systems of aqueous sodium hexanoate and hexylammonium chloride. The surface sensitive X-ray photoelectron spectroscopy technique has been used to acquire the experimental results, while the computational data have been calculated using molecular dynamics simulations. By comparing the single solute solutions with the mixed one, we observe a non-linear surface enrichment and reorientation of the organic ions with their alkyl chains pointing out of the aqueous surface. We ascribe this effect to ion paring between the charged functional groups on the respective organic ion and hydrophobic expulsion of the alkyl chains from the surface in combination with van der Waals interactions between the alkyl chains. These cooperative effects lead to a substantial surface enrichment of organic ions, with consequences for aerosol surface properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA