Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(33): 10292-7, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240356

RESUMEN

Bottom-up assemblies of plasmonic nanoparticles exhibit unique optical effects such as tunable reflection, optical cavity modes, and tunable photonic resonances. Here, we compare detailed simulations with experiment to explore the effect of structural inhomogeneity on the optical response in DNA-gold nanoparticle superlattices. In particular, we explore the effect of background environment, nanoparticle polydispersity (>10%), and variation in nanoparticle placement (∼5%). At volume fractions less than 20% Au, the optical response is insensitive to particle size, defects, and inhomogeneity in the superlattice. At elevated volume fractions (20% and 25%), structures incorporating different sized nanoparticles (10-, 20-, and 40-nm diameter) each exhibit distinct far-field extinction and near-field properties. These optical properties are most pronounced in lattices with larger particles, which at fixed volume fraction have greater plasmonic coupling than those with smaller particles. Moreover, the incorporation of experimentally informed inhomogeneity leads to variation in far-field extinction and inconsistent electric-field intensities throughout the lattice, demonstrating that volume fraction is not sufficient to describe the optical properties of such structures. These data have important implications for understanding the role of particle and lattice inhomogeneity in determining the properties of plasmonic nanoparticle lattices with deliberately designed optical properties.


Asunto(s)
ADN/química , Nanopartículas del Metal/química , Nanocompuestos/química , Simulación por Computador , Cristalización , Campos Electromagnéticos , Electrónica , Oro/química , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Conformación de Ácido Nucleico , Oligonucleótidos/química , Óptica y Fotónica , Tamaño de la Partícula , Dióxido de Silicio/química , Sincrotrones , Rayos X
2.
J Am Chem Soc ; 138(42): 13952-13959, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27668444

RESUMEN

This paper demonstrates the direct sensing of glucose at physiologically relevant concentrations with surface-enhanced Raman spectroscopy (SERS) on gold film-over-nanosphere (AuFON) substrates functionalized with bisboronic acid receptors. The combination of selectivity in the bisboronic acid receptor and spectral resolution in the SERS data allow the sensors to resolve glucose in high backgrounds of fructose and, in combination with multivariate statistical analysis, detect glucose accurately in the 1-10 mM range. Computational modeling supports assignments of the normal modes and vibrational frequencies for the monoboronic acid base of our bisboronic acids, glucose and fructose. These results are promising for the use of bisboronic acids as receptors in SERS-based in vivo glucose monitoring sensors.

3.
Langmuir ; 31(34): 9492-501, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26262910

RESUMEN

The properties of nanoparticle superstructures depend on many factors, including the structural metrics of the nanoparticle superstructure (particle diameter, interparticle distances, etc.). Here, we introduce a family of gold-binding peptide conjugate molecules that can direct nanoparticle assembly, and we describe how these molecules can be systematically modified to adjust the structural metrics of linear double-helical nanoparticle superstructures. Twelve new peptide conjugates are prepared via linking a gold-binding peptide, AYSSGAPPMPPF (PEP(Au)), to a hydrophobic aliphatic tail. The peptide conjugates have 1, 2, or 3 PEP(Au) headgroups and a C12, C14, C16, or C18 aliphatic tail. The soft assembly of these peptide conjugates was studied using transmission electron microscopy (TEM), atomic force microscopy (AFM), and infrared (IR) spectroscopy. Several peptide conjugates assemble into 1-D twisted fibers having measurable structural parameters such as fiber width, thickness, and pitch that can be systematically varied by adjusting the aliphatic tail length and number of peptide headgroups. The linear soft assemblies serve as structural scaffolds for arranging gold nanoparticles into double-helical superstructures, which are examined via TEM. The pitch and interparticle distances of the gold nanoparticle double helices correspond to the underlying metrics of the peptide conjugate soft assemblies, illustrating that designed peptide conjugate molecules can be used to not only direct the assembly of gold nanoparticles but also control the metrics of the assembled structure.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Péptidos/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
4.
Nano Lett ; 13(7): 3256-61, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23777529

RESUMEN

We utilize a peptide-based methodology to prepare a diverse collection of double-helical gold nanoparticle superstructures having controllable handedness and structural metrics. These materials exhibit well-defined circular dichroism signatures at visible wavelengths owing to the collective dipole-dipole interactions between the nanoparticles. We couple theory and experiment to show how tuning the metrics and structure of the helices results in predictable and tailorable chirooptical properties. Finally, we experimentally and theoretically demonstrate that the intensity, position, and nature of the chirooptical activity can be carefully adjusted via silver overgrowth. These studies illustrate the utility of peptide-based nanoparticle assembly platforms for designing and preparing complex plasmonic materials with tailorable optical properties.

5.
J Am Chem Soc ; 135(1): 301-8, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23214430

RESUMEN

Determining the existence of any direct spectral relationship between the far-field scattering properties and the near-field Raman-enhancing properties of surface-enhanced Raman spectroscopy (SERS) substrates has been a challenging task with only a few significant results to date. Here, we prove that hot spot dominated systems show little dependence on the far-field scattering properties because of differences between near- and far-field localized surface plasmon resonance (LSPR) effects as well as excitation of new plasmon modes via a localized emitter. We directly probe the relationship between the near- and far-field light interactions using a correlated LSPR-transmission electron microscopy (TEM) surface-enhanced Raman excitation spectroscopy (SERES) technique. Fourteen individual SERS nanoantennas, Au nanoparticle aggregates ranging from dimers to undecamers, coated in a reporter molecule and encased in a protective silica shell, were excited using eight laser wavelengths. We observed no correlation between the spectral position of the LSPR maxima and the maximum enhancement factor (EF). The single nanoantenna data reveal EFs ranging from (2.5 ± 0.6) × 10(4) to (4.5 ± 0.6) × 10(8) with maximum enhancement for excitation wavelengths of 785 nm and lower energy. The magnitude of maximum EF was not correlated to the number of cores in the nanoantenna or the spectral position of the LSPR, suggesting a separation between near-field SERS enhancement and far-field Rayleigh scattering. Computational electrodynamics confirms the decoupling of maximum SERS enhancement from the peak of the scattering spectrum. It also points to the importance of a localized emitter for radiating Raman photons to the far-field which, in nonsymmetric systems, allows for the excitation of radiative plasmon modes that are difficult to excite with plane waves. Once these effects are considered, we are able to fully explain the hot spot dominated SERS response of the nanoantennas.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Estructura Molecular , Tamaño de la Partícula , Espectrometría Raman , Propiedades de Superficie
6.
Anal Chem ; 85(4): 2297-303, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23343409

RESUMEN

We describe the fabrication of optimized plasmonic substrates in the form of immobilized nanorod assemblies (INRA) for surface-enhanced Raman spectroscopy (SERS). Included are high-resolution scanning electron micrograph (SEM) images of the surface structures, along with a mechanistic description of their growth. It is shown that, by varying the size of support microspheres, the surface plasmon resonance is tuned between 330 and 1840 nm. Notably, there are predicted optimal microsphere sizes for each of the commonly used SERS laser wavelengths of 532, 633, 785, and 1064 nm.


Asunto(s)
Nanotubos/química , Espectrometría Raman , Oro/química , Microscopía Electrónica de Rastreo , Microesferas , Tamaño de la Partícula , Plata/química , Resonancia por Plasmón de Superficie , Propiedades de Superficie
7.
Nano Lett ; 12(8): 4324-8, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22823536

RESUMEN

This paper reports the manipulation of surface plasmon polaritons (SPPs) in a liquid plasmonic metal by changing its physical phase. Dynamic properties were controlled by solid-to-liquid phase transitions in 1D Ga gratings that were fabricated using a simple molding process. Solid and liquid phases were found to exhibit different plasmonic properties, where light coupled to SPPs more efficiently in the liquid phase. We exploited the supercooling characteristics of Ga to access plasmonic properties associated with the liquid phase over a wider temperature range (up to 30 °C below the melting point of bulk Ga). Ab initio density functional theory-molecular dynamic calculations showed that the broadening of the solid-state electronic band structure was responsible for the superior plasmonic properties of the liquid metal.

8.
Nano Lett ; 12(10): 5275-80, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22985257

RESUMEN

We report a method based on density functional theory molecular dynamics that allows us to calculate the plasmonic properties of liquid metals and metal alloys from first principles with no a priori knowledge of the system. We show exceptional agreement between the simulated and measured optical constants of liquid Ga and the room temperature liquid In-Ga eutectic alloy (T(m) = 289 K). We then use this method to analyze the plasmonic properties of various alloy concentrations in the In-Ga system. The plasmonic performance of the In-Ga system decreases with increasing In concentration. However, the benefits of a room-temperature plasmonic liquid are likely to outweigh the minor reduction in plasmonic performance when moving from pure Ga to the eutectic composition. Our results show that density functional theory molecular dynamics can be used as a predictive tool for studying the optical properties of liquid metal systems amenable to plasmonics.

9.
J Phys Chem A ; 116(38): 9574-81, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22946645

RESUMEN

Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS.


Asunto(s)
Teoría Cuántica , Campos Electromagnéticos , Espectrometría Raman , Propiedades de Superficie , Factores de Tiempo
10.
Opt Express ; 18(7): 7528-42, 2010 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-20389775

RESUMEN

The position, width, extinction, and electric field of localized plasmon modes in closely-coupled linear chains of small spheres are investigated. A dipole-like model is presented that separates the universal geometric factors from the specific metal permittivity. An electrostatic surface integral method is used to deduce universal parameters that are confirmed against results for different metals (bulk experimental Ag, Au, Al, K) calculated using retarded vector spherical harmonics and finite elements. The mode permittivity change decays to an asymptote with the number of particles in the chain, and changes dramatically from 1/f(3) to 1/f(1/2) as the gap fraction (ratio of gap between spheres to their diameter), f, gets smaller. Scattering increases significantly with closer coupling. The mode sharpness, strength and electric field for weakly retarded calculations are consistent with electrostatic predictions once the effect of radiative damping is accounted for.

11.
Opt Express ; 17(5): 3835-47, 2009 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-19259225

RESUMEN

Optical metrics relating to metallic absorption in representative plasmonic systems are surveyed, with a view to developing heuristics for optimizing performance over a range of applications. We use the real part of the permittivity as the independent variable; consider strengths of particle resonances, resolving power of planar lenses, and guiding lengths of planar waveguides; and compare nearly-free-electron metals including Al, Cu, Ag, Au, Li, Na, and K. Whilst the imaginary part of metal permittivity has a strong damping effect, field distribution is equally important and thus factors including geometry, real permittivity and frequency must be considered when selecting a metal. Al performs well at low permittivities (e.g. sphere resonances, superlenses) whereas Au & Ag only perform well at very negative permittivities (shell and rod resonances, LRSPP). The alkali metals perform well overall but present engineering challenges.

12.
Nat Commun ; 5: 4090, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24934374

RESUMEN

The a priori ability to design electromagnetic wave propagation is crucial for the development of novel metamaterials. Incorporating plasmonic building blocks is of particular interest due to their ability to confine visible light. Here we explore the use of anisotropy in nanoscale and mesoscale plasmonic array architectures to produce noble metal-based metamaterials with unusual optical properties. We find that the combination of nanoscale and mesoscale anisotropy leads to rich opportunities for metamaterials throughout the visible and near-infrared. The low volume fraction (<5%) plasmonic metamaterials explored herein exhibit birefringence, a skin depth approaching that of pure metals for selected wavelengths, and directionally confined waves similar to those found in optical fibres. These data provide design principles with which the electromagnetic behaviour of plasmonic metamaterials can be tailored using high aspect ratio nanostructures that are accessible via a variety of synthesis and assembly methods.

13.
J Phys Chem Lett ; 4(9): 1371-8, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-26282287

RESUMEN

Understanding plasmon coupling between compositionally heterogeneous nanoparticles in close proximity is intriguing and fundamentally important because of the energy mismatch between the localized surface plasmons of the associated nanoparticles and interactions beyond classical electrodynamics. In this Letter, we explore surface plasmon coupling between silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), assembled in the form of core-satellite structures. A recently developed assembly method allows us to prepare ultrapure core-satellite nanoassemblies in solution, where 50 nm AgNPs are surrounded by 13 nm AuNPs via alkanedithiol linkers. We observe changes in the plasmon coupling between the AgNP core and AuNP satellites as the core-to-satellite gap distance varies from 2.3 to 0.7 nm. Comparison with theoretical studies reveals that the traditional hybridized plasmon modes are abruptly replaced by charge-transfer plasmons at a ∼1 nm gap. Changes with the number of satellites are also discussed.

14.
ACS Nano ; 6(9): 8397-406, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22954258

RESUMEN

This work presents a novel modeling approach to calculate the optical properties of gold nanoparticles coated with stimuli-responsive polymers. This approach combines, for the first time, a molecular description of the soft material with an electrodynamics calculation of the optical properties of the system. A mean-field molecular theory is first used to calculate the local density of the polymer and the position-dependent dielectric constant surrounding the nanoparticle. This information is then used to calculate the optical properties of the Au@polymer colloid by solving Maxwell's equations for an incident electromagnetic wave. Motivated by the interest in Au@PNIPAM and Au@PVP experimental systems, the theory is applied to study the effect of polymer collapse on the position of the localized surface plasmon resonance (LSPR) of the system. The most important results of the present study are as follows: (i) the LSPR always shifts to lower energies upon polymer collapse (in agreement with experimental results); this observation implies that the red shift expected due to increasing polymer density always overcomes the blue shift expected from decreasing layer thickness; (ii) the magnitude of the LSPR shift depends nonmonotonically on surface coverage and nanoparticle radius; and (iii) the formation of aggregates on the nanoparticle surface (due to microphase segregation) decreases the magnitude of the LSPR shift. These results highlight the importance of explicitly considering the coupling between the soft material and the inorganic components in determining the optical properties of the hybrid system.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Modelos Químicos , Modelos Moleculares , Polímeros/química , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Luz , Refractometría , Dispersión de Radiación
15.
Chem Commun (Camb) ; 47(13): 3769-71, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21340050

RESUMEN

Here we discuss some of the challenges of using dimers of spheres for SERS at long wavelengths. We show that the field enhancement in the gap between two spheres scales with a local surface plasmon metric, effectively limiting the range of wavelengths for which the largest SERS enhancements can be obtained for this class of structures to the near-IR.

16.
ACS Nano ; 4(9): 5453-63, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20738131

RESUMEN

The extinction spectra of Au nanorods electrochemically synthesized using anodic aluminum oxide templates are reported. Homogeneous suspensions of nanorods with average diameters of 35, 55, 80, and 100 nm and varying lengths were synthesized, and their resultant surface plasmon resonances were probed by experimental and theoretical methods. Experimental extinction spectra of the nanoparticles exhibit good overall agreement with those calculated using the discrete dipole approximation. We determine the dependence of the dipole plasmon wavelength on both rod length and diameter, and we then utilize these results to derive an equation for predicting longitudinal dipole resonance wavelength for nanorod dimensions beyond the quasistatic limit. On average, the equation allows one to predict plasmon resonance maxima within 25 nm of the experimentally measured values. An analysis of factors that are important in determining the plasmon width is also provided. For long rods, the width decreases with increasing length in spite of increased radiative damping due to increased frequency dispersion in the real part of the metal dielectric function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA