Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Exp Cell Res ; 426(2): 113568, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36967104

RESUMEN

l-Asparaginase is a cornerstone of acute lymphoblastic leukemia (ALL) therapy since lymphoblasts lack asparagine synthetase (ASNS) and rely on extracellular asparagine availability for survival. Resistance mechanisms are associated with increased ASNS expression in ALL. However, the association between ASNS and l-Asparaginase efficacy in solid tumors remains unclear, thus limiting clinical development. Interestingly, l-Asparaginase also has a glutaminase co-activity that is crucial in pancreatic cancer where KRAS mutations activate glutamine metabolism. By developing l-Asparaginase-resistant pancreatic cancer cells and using OMICS approaches, we identified glutamine synthetase (GS) as a marker of resistance to l-Asparaginase. GS is the only enzyme able to synthesize glutamine, and its expression also correlates with l-Asparaginase efficacy in 27 human cell lines from 11 cancer indications. Finally, we further demonstrated that GS inhibition prevents cancer cell adaptation to l-Asparaginase-induced glutamine starvation. These findings could pave the way to the development of promising drug combinations to overcome l-Asparaginase resistance.


Asunto(s)
Neoplasias Pancreáticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Asparaginasa/farmacología , Glutamato-Amoníaco Ligasa/genética , Glutaminasa/genética , Glutamina/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Neoplasias Pancreáticas
2.
PLoS Biol ; 16(5): e2002912, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29750782

RESUMEN

The neurotrophin-3 (NT-3) receptor tropomyosin receptor kinase C (TrkC/NTRK3) has been described as a dependence receptor and, as such, triggers apoptosis in the absence of its ligand NT-3. This proapoptotic activity has been proposed to confer a tumor suppressor activity to this classic tyrosine kinase receptor (RTK). By investigating interacting partners that might facilitate TrkC-induced cell death, we have identified the basic helix-loop-helix (bHLH) transcription factor Hey1 and importin-α3 (karyopherin alpha 4 [KPNA4]) as direct interactors of TrkC intracellular domain, and we show that Hey1 is required for TrkC-induced apoptosis. We propose here that the cleaved proapoptotic portion of TrkC intracellular domain (called TrkC killer-fragment [TrkC-KF]) is translocated to the nucleus by importins and interacts there with Hey1. We also demonstrate that Hey1 and TrkC-KF transcriptionally silence mouse double minute 2 homolog (MDM2), thus contributing to p53 stabilization. p53 transcriptionally regulates the expression of TrkC-KF cytoplasmic and mitochondrial interactors cofactor of breast cancer 1 (COBRA1) and B cell lymphoma 2-associated X (BAX), which will subsequently trigger the intrinsic pathway of apoptosis. Of interest, TrkC was proposed to constrain tumor progression in neuroblastoma (NB), and we demonstrate in an avian model that TrkC tumor suppressor activity requires Hey1 and p53.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neuroblastoma/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Receptor trkC/metabolismo , Proteínas Represoras/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis , Embrión de Pollo , Cromatina/metabolismo , Regulación de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Carioferinas/metabolismo , Ratones
3.
Dev Biol ; 442(2): 249-261, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30071216

RESUMEN

The development of the sensory nervous system is the result of fine-tuned waves of neurogenesis and apoptosis which control the appropriate number of precursors and newly generated neurons and orient them toward a specific lineage. Neurotrophins and their tyrosine-kinase receptors (RTK) orchestrate this process. They have long been in the scope of the neurotrophic theory which established that a neuron is committed to die unless a trophic factor generated by its target provides it with a survival signal. The neural death has thus always been described as a "default" program, survival being the major player to control the number of cells. New insights have been brought by the gain of function studies which recently demonstrated that TrkC (NTRK3) is a "dependence receptor" able to actively trigger apoptosis in absence of its ligand NT-3. In order to address the role of TrkC pro-apoptotic activity in the control of sensory neurons number, we generated a TrkC gene-trap mutant mice. We found out that this new murine model recapitulates the sensory phenotype of TrkC constitutive mutants, with reduced DRG size and reduced number of DRG neurons. We engineered these mice strain with a lacZ reporter in order to follow the fate of neurons committed to a TrkC lineage and observed that they are specifically protected from NT-3 mediated apoptosis in NT-3/TrkC double knock-out embryos. Finally, using a chicken model we demonstrated that silencing NT-3 emanating from the ventral neural tube induced apoptosis in the DRG anlage. This apoptosis was inhibited by silencing TrkC. This work thus demonstrates that, during in vivo DRG development, TrkC behaves as a two-sided receptor transducing positive signals of neuronal survival in response to NT-3, but actively inducing neuronal cell death when unbound. This functional duality sets adequate number of neurons committed to a TrkC identity in the forming DRG.


Asunto(s)
Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Receptor trkC/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Animales , Apoptosis/fisiología , Línea Celular , Supervivencia Celular/fisiología , Embrión de Pollo , Femenino , Ganglios Espinales/embriología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo
4.
EMBO Mol Med ; 8(2): 96-104, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26882243

RESUMEN

DCC (Deleted in Colorectal Carcinoma) has been demonstrated to constrain tumor progression by inducing apoptosis unless engaged by its ligand netrin-1. This has been shown in breast and colorectal cancers; however, this tumor suppressive function in other cancers is not established. Using a transgenic mouse model, we report here that inhibition of DCC-induced apoptosis is associated with lymphomagenesis. In human diffuse large B-cell lymphoma (DLBCL), an imbalance of the netrin-1/DCC ratio suggests a loss of DCC-induced apoptosis, either via a decrease in DCC expression in germinal center subtype or by up-regulation of netrin-1 in activated B-cell (ABC) one. Such imbalance is also observed in mantle cell lymphoma (MCL). Using a netrin-1 interfering antibody, we demonstrate both in vitro and in vivo that netrin-1 acts as a survival factor for ABC-DLBCL and MCL tumor cells. Together, these data suggest that interference with the netrin-1/DCC interaction could represent a promising therapeutic strategy in netrin-1-positive DLBCL and MCL.


Asunto(s)
Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/terapia , Factores de Crecimiento Nervioso/antagonistas & inhibidores , Receptores de Superficie Celular/metabolismo , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/metabolismo , Animales , Anticuerpos/administración & dosificación , Anticuerpos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Receptor DCC , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Ratones , Ratones Transgénicos , Netrina-1 , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA