Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Anal Toxicol ; 28(3): 168-73, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15107146

RESUMEN

1,3-Butadiene (BD) is a monomer produced in petrochemical production facilities and from several combustion sources. The United States Environmental Protection Agency has defined BD as a probable human carcinogen. Methods for assessing exposure and internal dose are therefore of critical interest, and one technique is the measurement of urinary metabolites. Here we describe methods for measuring two urinary metabolites, N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (referred to as MI) and an isomeric mixture of the regio- and stereoisomers (R)/(S)-N-acetyl-S-(1-(hydroxymethyl)-2-propen-yl)-L-cysteine and (R)/(S)-N-acetyl-S-(2-hydroxy-3-butenyl)-L-cysteine (referred to as MII). The method is based on isolation of the metabolites by solid-phase extraction and measurement using liquid chromatography and triple quadrupole mass spectrometry (LC-MS(3)). The LC-MS(3) allowed good selectivity with minimal sample preparation. Assay accuracy was within 10% or better, with substantial improvement in accuracy accompanying the commercial availability of deuterated internal standards for both compounds. Assay precision and linearity passed rigorous validation criteria, and precision-based limits of quantitation values were 12 and 1 ng/mL for MI and MII, respectively. Data are shown from analysis of human urine from occupationally exposed individuals and rat urine from BD exposures conducted to investigate rodent metabolic profiles. Both of these data sets clearly show that this assay can discern previously described relationships between BD exposure and the production of MI/MII.


Asunto(s)
Acetilcisteína/análogos & derivados , Acetilcisteína/orina , Contaminantes Ocupacionales del Aire/farmacocinética , Butadienos/farmacocinética , Administración por Inhalación , Animales , Bioensayo , Biomarcadores/orina , Butadienos/administración & dosificación , Cromatografía Liquida/métodos , Femenino , Humanos , Isomerismo , Espectrometría de Masas/métodos , Exposición Profesional , Ratas , Ratas Endogámicas F344 , Reproducibilidad de los Resultados , Estereoisomerismo
2.
Res Rep Health Eff Inst ; (116): 1-141; discussion 143-62, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12931846

RESUMEN

A multiinstitutional, transitional epidemiologic study was conducted with a worker population in the Czech Republic to evaluate the utility of a continuum of non-disease biological responses as biomarkers of exposure to 1,3-butadiene (BD)* in an industrial setting. The study site included two BD facilities in the Czech Republic. Institutions that collaborated in the study were the University of Vermont (Burlington, Vermont, USA); the Laboratory of Genetic Ecotoxicology (Prague, the Czech Republic); Shell International Chemicals, BV (Amsterdam, The Netherlands); the University of North Carolina at Chapel Hill (Chapel Hill, North Carolina, USA); University of Texas Medical Branch at Galveston (Galveston, Texas, USA); Leiden University (Leiden, The Netherlands); and the Health and Safety Laboratory (Sheffield, United Kingdom). Male volunteer workers (83) participated in the study: 24 were engaged in BD monomer production, 34 in polymerization activities, and 25 plant administrative workers served as unexposed control subjects. The BD concentrations experienced by each exposed worker were measured by personal monitor on approximately ten separate occasions for 8-hour workshifts over a 60-day exposure assessment period before biological samples were collected. Coexposures to styrene, benzene, and toluene were also measured. The administrative control workers were considered to be a homogeneous, unexposed group for whom a series of 28 random BD measurements were taken during the exposure assessment period. Questionnaires were administered in Czech to all participants. At the end of the exposure assessment period, blood and urine samples were collected at the plant; samples were. fractionated, cryopreserved, and kept frozen in Prague until they were shipped to the appropriate laboratories for specific biomarker analysis. The following biomarkers were analyzed: * polymorphisms in genes involved in BD metabolism (Prague and Burlington); * urinary concentrations of 1-hydroxy-2-(N-acetylcysteinyl)-3-butene and 2-hydroxy-1-(N-acetylcysteinyl)-3-butene (M2 [refers to an isomeric mixture of both forms]) (Amsterdam); * urinary concentrations of 1,2-dihydroxy-4-(N-acetylcysteinyl)-butane (M1) (Amsterdam); * concentrations of the hemoglobin (Hb) adducts N-(1-[hydroxymethyl]-2-propenyl)valine and N-(2-hydroxy-3-butenyl)valine (HBVal [refers to an isomeric mixture of both forms]) (Amsterdam); * concentrations of the Hb adduct N-(2,3,4-trihydroxybutyl)valine (THBVal) (Chapel Hill); * T cell mutations in the hypoxanthine phosphoribosyltransferase (HPRT) gene (autoradiographic assay in Galveston with slide review in Burlington; cloning assay in Leiden with mutational spectra determined in Burlington); and * chromosomal aberrations by the conventional method and by fluorescence in situ hybridization [FISH]), and cytogenetic changes (sister chromatid exchanges [SCEs] (Prague). All assay analysts were blinded to worker and sample identity and remained so until all work in that laboratory had been completed and reported. Assay results were sent to the Biometry Facility in Burlington for statistical analyses. Analysis of questionnaire data revealed that the three exposure groups were balanced with respect to age and years of residence in the district, but the control group had significantly more education than the other two groups and included fewer smokers. Group average BD exposures were 0.023 mg/m3 (0.010 ppm) for the control group, 0.642 mg/m3 (0.290 ppm) for the monomer group, and 1.794 mg/m3 (0.812 ppm) for the polymer group; exposure levels showed considerable variability between and within individuals. Styrene exposures were significantly higher in the polymer group than in the other two groups. We found no statistically significant differences in the distributions of metabolic genotypes over the three exposure groups; genotype frequencies were consistent with those previously reported for this ethnic and national population. Although some specific genotypes were associated with quantitative differences in urinary metabolite concentrations or Hb adduct dose-response characteristics, none indicated a heightened susceptibility to BD. Concentrations of both the M2 and M1 urinary metabolites and both the HBVal and THBVal Hb adducts were significantly correlated with group and individual mean BD exposure levels; the Hb adducts were more strongly correlated than the urinary metabolites. By contrast, no significant relations were observed between BD exposures and HPRT gene mutations (whether determined by the auto-radiographic or the cloning method) or any of the cytogenetic biomarkers (whether determined by the conventional method or FISH analysis). Neither the mutational nor the cytogenetic responses showed any association with genotypes. The molecular spectrum of HPRT mutations in BD-exposed workers showed a high frequency of deletions; but the same result was found in the unexposed control subjects, which suggests that these were not due to BD exposure. This lack of association between BD exposures and genetic effects persisted even when control subjects were excluded from the analyses or when we conducted regression analyses of individual workers exposed to different levels of BD.


Asunto(s)
Biomarcadores/análisis , Butadienos/sangre , Butadienos/orina , Exposición Profesional/análisis , Animales , Benceno/análisis , Benceno/metabolismo , Butadienos/metabolismo , República Checa/epidemiología , Genotipo , Hemoglobinas/efectos de los fármacos , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Industrias , Linfocitos/ultraestructura , Masculino , Mutación , Exposición Profesional/estadística & datos numéricos , Polimorfismo Genético , Ratas , Estireno/análisis , Estireno/metabolismo , Tolueno/análisis , Tolueno/metabolismo
3.
Toxicol Appl Pharmacol ; 184(2): 82-7, 2002 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-12408952

RESUMEN

The nerve gas sarin is a potent cholinergic agent, and exposure to high doses may cause neurotoxicity and death. Subclinical exposures to sarin have been postulated to contribute to the Gulf War syndrome; however, the biological effects of subclinical exposure are largely unknown. In this communication, evidence shows that subclinical doses (0.2 and 0.4 mg/m(3)) of sarin administered by inhalation to F344 rats for 1 h/day for 5 or 10 days inhibited the anti-sheep red blood cell antibody-forming cell response of spleen cells without affecting the distribution of lymphocyte subpopulations in the spleen. Moreover, sarin suppressed T cell responses, including the concanavalin A (Con A) and the anti-alphabeta-T cell receptor (TCR) antibody-induced T cell proliferation and the rise in the intracellular calcium following TCR ligation. These concentrations of sarin altered regional but not total brain acetylcholinesterase activity. Interestingly, serum corticosterone levels of the sarin-treated animals were dramatically lower than the control animals, indicating that sarin-induced immunosuppression did not result from the activation of the hypothalamus-pituitary-adrenal (HPA) axis. Pretreatment of animals with the ganglionic blocker chlorisondamine abrogated the inhibitory effects of sarin on spleen cell proliferation in response to Con A and anti-TCR antibodies. These results suggest that the effects of sarin on T cell responsiveness are mediated via the autonomic nervous system and are independent of the HPA axis.


Asunto(s)
Sistema Nervioso Autónomo/efectos de los fármacos , Sustancias para la Guerra Química/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Sarín/toxicidad , Linfocitos T/efectos de los fármacos , Animales , Células Productoras de Anticuerpos/efectos de los fármacos , Sistema Nervioso Autónomo/fisiología , Calcio/metabolismo , Clorisondamina/farmacología , Corticosterona/sangre , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/fisiología , Activación de Linfocitos/efectos de los fármacos , Masculino , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/fisiología , Ratas , Ratas Endogámicas F344 , Receptores de Antígenos de Linfocitos T/fisiología , Linfocitos T/inmunología
4.
Toxicol Appl Pharmacol ; 184(2): 67-76, 2002 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-12408950

RESUMEN

The purpose of this study was to determine whether exposure to levels of sarin causing no overt clinical signs would cause more subtle, adverse health effects that persisted after the exposure ended. Inhalation exposures of male Fischer 344 rats to 0, 0.2, or 0.4 mg/m(3) of sarin for 1 h/day for 1, 5, or 10 days under normal (25 degrees C) and heat-stressed (32 degrees C) conditions were completed and observations were made at 1 day and 1 month after the exposures. The sarin exposures had no observed effects on body weight, respiration rate, and minute volume during exposure nor in body temperature and activity during the 30-day recovery period. There was no evidence of cellular changes in brain determined by routine histopathology nor of any increase in apoptosis. Brain mRNA for interleukin (IL)-1beta, tumor necrosis factor-alpha, and IL-6 was increased in a dose-dependent manner. Autoradiographic studies demonstrated that M1 cholinergic receptor site densities were unchanged at 1 day after repeated exposures with or without heat stress. At 30 days, there was a decrease in M1 receptors in the olfactory tubercle (with and without heat), and, with heat stress, M1 sites also decreased in a dose-dependent manner in the frontal cortex, anterior olfactory nucleus, and hippocampus. M3 receptor sites were not affected by sarin exposure alone. In the presence of heat stress, there was an upregulation in binding site densities in the frontal cortex, olfactory tubercle, anterior nucleus, and striatum immediately after exposure, and these effects persisted at 30 days. Although red blood cell acetylcholinesterase (AChE) was not greatly inhibited by the 1-day exposure, there were 30 and 60% inhibitions after repeated exposures at the low and high doses, respectively. Histochemical staining for AChE demonstrated that sarin exposure alone reduced AChE in the cerebral cortex, striatum, and olfactory bulb. Sarin exposure under heat stress reduced AChE staining in the hippocampus, an area important for memory function. Thus, repeated exposures under heat-stress conditions, to levels of sarin that would not be noticed clinically, resulted in delayed development of brain alterations in cholinergic receptor subtypes that may be associated with memory loss and cognitive dysfunction.


Asunto(s)
Sustancias para la Guerra Química/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Sarín/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/patología , Citocinas/biosíntesis , Pulmón/efectos de los fármacos , Pulmón/fisiología , Masculino , Ratas , Ratas Endogámicas F344 , Receptores Muscarínicos/análisis , Receptores Muscarínicos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA