Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Infect Dis ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37802928

RESUMEN

Allergic bronchopulmonary aspergillosis and invasive fungal diseases represent distinct infectious entities that cause significant morbidity and mortality. Currently, administered inhaled antifungal therapies are unapproved, have suboptimal efficacy, and are associated with considerable adverse reactions. The emergence of resistant pathogens is also a growing concern. Inhaled antifungal development programs are challenged by inadequate nonclinical infection models, highly heterogenous patient populations, low prevalence rates of fungal diseases, difficulties defining clinical trial enrollment criteria, and lack of robust clinical trial endpoints. On September 25, 2020, the US Food and Drug Administration (FDA) convened a workshop with experts in pulmonary medicine and infectious diseases from academia, industry, and other governmental agencies. Key discussion topics included regulatory incentives to facilitate development of inhaled antifungal drugs and combination inhalational devices, limitations of existing nonclinical models and clinical trial designs, patient perspectives, and industry insights.

2.
Nat Methods ; 11(12): 1229-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25306545

RESUMEN

We developed molecular tension probes (TPs) that report traction forces of adherent cells with high spatial resolution, can in principle be linked to virtually any surface, and obviate monitoring deformations of elastic substrates. TPs consist of DNA hairpins conjugated to fluorophore-quencher pairs that unfold and fluoresce when subjected to specific forces. We applied TPs to reveal that cellular traction forces are heterogeneous within focal adhesions and localized at their distal edges.


Asunto(s)
Adhesión Celular/fisiología , Sondas de ADN , Adhesiones Focales/fisiología , Mecanotransducción Celular/fisiología , Animales , Células Cultivadas , Sondas de ADN/química , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Microscopía Fluorescente
3.
Nat Methods ; 7(12): 969-71, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21076420

RESUMEN

Quantitative measurements of cell-generated forces have heretofore required that cells be cultured on two-dimensional substrates. We describe a technique to quantitatively measure three-dimensional traction forces exerted by cells fully encapsulated in well-defined elastic hydrogel matrices. Using this approach we measured traction forces for several cell types in various contexts and revealed patterns of force generation attributable to morphologically distinct regions of cells as they extend into the surrounding matrix.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas/fisiología , Células 3T3/citología , Células 3T3/efectos de los fármacos , Células 3T3/fisiología , Animales , Técnicas de Cultivo de Célula/métodos , División Celular , Células Cultivadas/citología , Medios de Cultivo , Módulo de Elasticidad/fisiología , Matriz Extracelular/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Proteínas Fluorescentes Verdes/genética , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Ratones , Proteínas Recombinantes/farmacología , Estrés Mecánico
4.
J Biomed Mater Res A ; 103(10): 3331-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25851120

RESUMEN

Engineered tissue constructs have the potential to augment or replace whole organ transplantation for the treatment of liver failure. Poly(ethylene glycol) (PEG)-based systems are particularly promising for the construction of engineered liver tissue due to their biocompatibility and amenability to modular addition of bioactive factors. To date, primary hepatocytes have been successfully encapsulated in non-degradable hydrogels based on PEG-diacrylate (PEGDA). In this study, we describe a hydrogel system based on PEG-diacrylamide (PEGDAAm) containing matrix-metalloproteinase sensitive (MMP-sensitive) peptide in the hydrogel backbone that is suitable for hepatocyte culture both in vitro and after implantation. By replacing hydrolytically unstable esters in PEGDA with amides in PEGDAAm, resultant hydrogels resisted non-specific hydrolysis, while still allowing for MMP-mediated hydrogel degradation. Optimization of polymerization conditions, hepatocellular density, and multicellular tissue composition modulated both the magnitude and longevity of hepatic function in vitro. Importantly, hepatic PEGDAAm-based tissues survived and functioned for over 3 weeks after implantation ectopically in the intraperitoneal (IP) space of nude mice. Together, these studies suggest that MMP-sensitive PEGDAAm-based hydrogels may be a useful material system for applications in tissue engineering and regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3331-3338, 2015.


Asunto(s)
Hepatocitos/metabolismo , Hidrogeles/química , Hígado Artificial , Hígado , Polietilenglicoles/química , Ingeniería de Tejidos , Animales , Células Cultivadas , Masculino , Ratones , Ratas , Ratas Endogámicas Lew
5.
Biomaterials ; 31(13): 3736-43, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20138664

RESUMEN

Synthetic hydrogels based on poly(ethylene glycol) (PEG) have been used as biomaterials for cell biology and tissue engineering investigations. Bioactive PEG-based gels have largely relied on heterobifunctional or multi-arm PEG precursors that can be difficult to synthesize and characterize or expensive to obtain. Here, we report an alternative strategy, which instead uses inexpensive and readily available PEG precursors to simplify reactant sourcing. This new approach provides a robust system in which to probe cellular interactions with the microenvironment. We used the step-growth polymerization of PEG diacrylate (PEGDA, 3400Da) with bis-cysteine matrix metalloproteinase (MMP)-sensitive peptides via Michael-type addition to form biodegradable photoactive macromers of the form acrylate-PEG-(peptide-PEG)(m)-acrylate. The molecular weight (MW) of these macromers is controlled by the stoichiometry of the reaction, with a high proportion of resultant macromer species greater than 500kDa. In addition, the polydispersity of these materials was nearly identical for three different MMP-sensitive peptide sequences subjected to the same reaction conditions. When photopolymerized into hydrogels, these high MW materials exhibit increased swelling and sensitivity to collagenase-mediated degradation as compared to previously published PEG hydrogel systems. Cell-adhesive acrylate-PEG-CGRGDS was synthesized similarly and its immobilization and stability in solid hydrogels was characterized with a modified Lowry assay. To illustrate the functional utility of this approach in a biological setting, we applied this system to develop materials that promote angiogenesis in an ex vivo aortic arch explant assay. We demonstrate the formation and invasion of new sprouts mediated by endothelial cells into the hydrogels from embedded embryonic chick aortic arches. Furthermore, we show that this capillary sprouting and three-dimensional migration of endothelial cells can be tuned by engineering the MMP-susceptibility of the hydrogels and the presence of functional immobilized adhesive ligands (CGRGDS vs. CGRGES peptide). The facile chemistry described and significant cellular responses observed suggest the usefulness of these materials in a variety of in vitro and ex vivo biologic investigations, and may aid in the design or refinement of material systems for a range of tissue engineering approaches.


Asunto(s)
Hidrogeles/farmacología , Polietilenglicoles/química , Secuencia de Aminoácidos , Animales , Embrión de Pollo , Hidrogeles/química , Peso Molecular , Neovascularización Fisiológica
6.
J Biomed Mater Res B Appl Biomater ; 93(1): 9-17, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20127874

RESUMEN

X-ray visibility is an integral design component of in situ gelling embolization systems for neurovascular treatment. The goals of this project included the synthesis and characterization of a unique intrinsically radio-opaque in situ gelling material for neurovascular embolization. The gels formed using Michael-Type Addition between pentaerythritol tetrakis 3-mercaptopropionate (QT) thiols and poly(propylene glycol) diacrylate (PPODA) with the addition of the new material Iodobenzoyl poly(ethylene glycol) acrylate (IPEGA), a radio-opaque agent, synthesized successfully as confirmed with (1)H NMR. The PPODA and IPEGA were mixed using a syringe coupler with QT and buffer at pH 11 for 90 seconds. Gel mixes were weighed to provide equal molar thiols and acrylate groups, changing the present acrylate-bearing compounds wt % ratios from 100 PPODA: 0 IPEGA, 90:10, 80:20, 70:30, 60:40, 50:50, and 0:100. Formulations with 10% and above of IPEGA were X-ray visible. Rheology showed that increasing the amount of IPEGA decreased the storage. Kinetic FT-IR studies indicate that the amphiphilic nature of the PEG backbone increased the reaction rate of the phase segregated reactants. Second order reaction constant modeling showed a change in initial reaction rate from 0.0029 to 0.0187 (M sec)(-1) from the 10% to 50% IPEGA formulations respectively.


Asunto(s)
Medios de Contraste/química , Ácido 3-Mercaptopropiónico/análogos & derivados , Ácido 3-Mercaptopropiónico/química , Medios de Contraste/síntesis química , Elasticidad , Embolización Terapéutica , Geles , Humanos , Técnicas In Vitro , Yodobencenos/química , Espectroscopía de Resonancia Magnética , Ensayo de Materiales , Estructura Molecular , Polietilenglicoles/química , Polímeros/química , Glicoles de Propileno/química , Reología , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA