Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 10(3): e1004190, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24603370

RESUMEN

Although a considerable proportion of serum lipids loci identified in European ancestry individuals (EA) replicate in African Americans (AA), interethnic differences in the distribution of serum lipids suggest that some genetic determinants differ by ethnicity. We conducted a comprehensive evaluation of five lipid candidate genes to identify variants with ethnicity-specific effects. We sequenced ABCA1, LCAT, LPL, PON1, and SERPINE1 in 48 AA individuals with extreme serum lipid concentrations (high HDLC/low TG or low HDLC/high TG). Identified variants were genotyped in the full population-based sample of AA (n = 1694) and tested for an association with serum lipids. rs328 (LPL) and correlated variants were associated with higher HDLC and lower TG. Interestingly, a stronger effect was observed on a "European" vs. "African" genetic background at this locus. To investigate this effect, we evaluated the region among West Africans (WA). For TG, the effect size among WA was the same in AA with only African local ancestry (2-3% lower TG), while the larger association among AA with local European ancestry matched previous reports in EA (10%). For HDLC, there was no association with rs328 in AA with only African local ancestry or in WA, while the association among AA with European local ancestry was much greater than what has been observed for EA (15 vs. ∼ 5 mg/dl), suggesting an interaction with an environmental or genetic factor that differs by ethnicity. Beyond this ancestry effect, the importance of African ancestry-focused, sequence-based work was also highlighted by serum lipid associations of variants that were in higher frequency (or present only) among those of African ancestry. By beginning our study with the sequence variation present in AA individuals, investigating local ancestry effects, and seeking replication in WA, we were able to comprehensively evaluate the role of a set of candidate genes in serum lipids in AA.


Asunto(s)
Negro o Afroamericano/genética , Etnicidad/genética , Estudio de Asociación del Genoma Completo , Lípidos/genética , Variación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Desequilibrio de Ligamiento , Lípidos/sangre , Polimorfismo de Nucleótido Simple , Población Blanca/genética
2.
PLoS Genet ; 7(10): e1002325, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22022284

RESUMEN

We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2(Y616C) gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2(Y616C) complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other "mitochondrial" features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias.


Asunto(s)
Proteasas ATP-Dependientes/genética , Encéfalo/anomalías , Metaloendopeptidasas/genética , Mitocondrias/enzimología , Paraplejía Espástica Hereditaria/genética , Degeneraciones Espinocerebelosas/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adolescente , Secuencia de Aminoácidos , Animales , Encéfalo/patología , Niño , Diagnóstico Diferencial , Exoma/genética , Genotipo , Células HeLa , Homocigoto , Humanos , Masculino , Metaloendopeptidasas/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación Missense , Paraplejía , Pliegue de Proteína , Hermanos , Paraplejía Espástica Hereditaria/patología , Ataxias Espinocerebelosas/congénito , Degeneraciones Espinocerebelosas/patología , Levaduras/genética
3.
BMC Biol ; 10: 107, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23259493

RESUMEN

BACKGROUND: Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. RESULTS: The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light production and light reception may be functionally connected in ctenophore photocytes. We also present genomic evidence of a complete ciliary phototransduction cascade in Mnemiopsis. CONCLUSIONS: This study elucidates the genomic organization, evolutionary history, and developmental expression of photoprotein and opsin genes in the ctenophore Mnemiopsis leidyi, introduces a novel dual role for ctenophore photocytes in both bioluminescence and phototransduction, and raises the possibility that light production and light reception are linked in this early-branching non-bilaterian animal.


Asunto(s)
Ctenóforos/citología , Ctenóforos/genética , Evolución Molecular , Regulación de la Expresión Génica , Genoma/genética , Proteínas Luminiscentes/genética , Opsinas/genética , Secuencia de Aminoácidos , Animales , Análisis por Conglomerados , Ctenóforos/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Proteínas Fluorescentes Verdes/metabolismo , Luz , Fototransducción/efectos de la radiación , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Opsinas/química , Opsinas/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Selección Genética , Alineación de Secuencia , Análisis de Secuencia de Proteína , Análisis Espectral
4.
Genome Res ; 19(9): 1665-74, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19602640

RESUMEN

ClinSeq is a pilot project to investigate the use of whole-genome sequencing as a tool for clinical research. By piloting the acquisition of large amounts of DNA sequence data from individual human subjects, we are fostering the development of hypothesis-generating approaches for performing research in genomic medicine, including the exploration of issues related to the genetic architecture of disease, implementation of genomic technology, informed consent, disclosure of genetic information, and archiving, analyzing, and displaying sequence data. In the initial phase of ClinSeq, we are enrolling roughly 1000 participants; the evaluation of each includes obtaining a detailed family and medical history, as well as a clinical evaluation. The participants are being consented broadly for research on many traits and for whole-genome sequencing. Initially, Sanger-based sequencing of 300-400 genes thought to be relevant to atherosclerosis is being performed, with the resulting data analyzed for rare, high-penetrance variants associated with specific clinical traits. The participants are also being consented to allow the contact of family members for additional studies of sequence variants to explore their potential association with specific phenotypes. Here, we present the general considerations in designing ClinSeq, preliminary results based on the generation of an initial 826 Mb of sequence data, the findings for several genes that serve as positive controls for the project, and our views about the potential implications of ClinSeq. The early experiences with ClinSeq illustrate how large-scale medical sequencing can be a practical, productive, and critical component of research in genomic medicine.


Asunto(s)
Aterosclerosis/genética , Investigación Biomédica , Enfermedades Cardiovasculares/genética , Genoma Humano , Genómica , Proyectos Piloto , Análisis de Secuencia de ADN/métodos , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Linaje , Fenotipo
5.
Mol Genet Metab ; 104(1-2): 189-91, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21767969

RESUMEN

While genomic sequencing methods are powerful tools in the discovery of the genetic underpinnings of human disease, incidentally-revealed novel genomic risk factors may be equally important, both scientifically, and as relates to direct patient care. We performed whole-exome sequencing on a child with VACTERL association who suffered severe post-surgical neonatal pulmonary hypertension, and identified a potential novel genetic risk factor for this complication: a heterozygous mutation in CPSI. Newborn screening results from this patient's monozygotic twin provided evidence that this mutation, in combination with an environmental trigger (in this case, surgery), may have resulted in pulmonary artery hypertension due to inadequate nitric oxide production. Identification of this genetic risk factor allows for targeted medical preventative measures in this patient as well as relatives with the same mutation, and illustrates the power of incidental medical information unearthed by whole-exome sequencing.


Asunto(s)
Exoma/genética , Genómica , Medicina de Precisión , Hipertensión Pulmonar Primaria Familiar , Humanos , Hipertensión Pulmonar/genética , Lactante , Recién Nacido , Masculino , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
6.
BMC Genomics ; 11: 21, 2010 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-20064230

RESUMEN

BACKGROUND: The approaches for shotgun-based sequencing of vertebrate genomes are now well-established, and have resulted in the generation of numerous draft whole-genome sequence assemblies. In contrast, the process of refining those assemblies to improve contiguity and increase accuracy (known as 'sequence finishing') remains tedious, labor-intensive, and expensive. As a result, the vast majority of vertebrate genome sequences generated to date remain at a draft stage. RESULTS: To date, our genome sequencing efforts have focused on comparative studies of targeted genomic regions, requiring sequence finishing of large blocks of orthologous sequence (average size 0.5-2 Mb) from various subsets of 75 vertebrates. This experience has provided a unique opportunity to compare the relative effort required to finish shotgun-generated genome sequence assemblies from different species, which we report here. Importantly, we found that the sequence assemblies generated for the same orthologous regions from various vertebrates show substantial variation with respect to misassemblies and, in particular, the frequency and characteristics of sequence gaps. As a consequence, the work required to finish different species' sequences varied greatly. Application of the same standardized methods for finishing provided a novel opportunity to "assay" characteristics of genome sequences among many vertebrate species. It is important to note that many of the problems we have encountered during sequence finishing reflect unique architectural features of a particular vertebrate's genome, which in some cases may have important functional and/or evolutionary implications. Finally, based on our analyses, we have been able to improve our procedures to overcome some of these problems and to increase the overall efficiency of the sequence-finishing process, although significant challenges still remain. CONCLUSION: Our findings have important implications for the eventual finishing of the draft whole-genome sequences that have now been generated for a large number of vertebrates.


Asunto(s)
Genómica/métodos , Análisis de Secuencia de ADN/métodos , Vertebrados/genética , Animales , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Genoma
7.
Nucleic Acids Res ; 30(11): 2469-77, 2002 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12034835

RESUMEN

In parallel with the production of genomic sequence data, attention is being focused on the generation of comprehensive cDNA-sequence resources. Such efforts are increasingly emphasizing the production of high-accuracy sequence corresponding to the entire insert of cDNA clones, especially those presumed to reflect the full-length mRNA. The complete sequencing of cDNA clones on a large scale presents unique challenges because of the generally small, yet heterogeneous, sizes of the cloned inserts. We have developed a strategy for high-throughput sequencing of cDNA clones using the transposon Tn5. This approach has been tailored for implementation within an existing large-scale 'shotgun-style' sequencing program, although it could be readily adapted for use in virtually any sequencing environment. In addition, we have developed a modified version of our strategy that can be applied to cDNA clones with large cloning vectors, thereby overcoming a potential limitation of transposon-based approaches. Here we describe the details of our cDNA-sequencing pipeline, including a summary of the experience in sequencing more than 4200 cDNA clones to produce more than 8 million base pairs of high-accuracy cDNA sequence. These data provide both convincing evidence that the insertion of Tn5 into cDNA clones is sufficiently random for its effective use in large-scale cDNA sequencing as well as interesting insight about the sequence context preferred for insertion by Tn5.


Asunto(s)
Elementos Transponibles de ADN/genética , ADN Complementario/genética , Análisis de Secuencia de ADN/métodos , Composición de Base , Distribución Binomial , Clonación Molecular , Vectores Genéticos/genética , Mutagénesis Insercional/genética , Mapeo Físico de Cromosoma/métodos , Recombinación Genética/genética , Sensibilidad y Especificidad
8.
Sci Transl Med ; 6(254): 254ra126, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25232178

RESUMEN

Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care-associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem resistance genes on a wide array of plasmids. K. pneumoniae and E. cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, indicating that plasmid transfer between organisms was unlikely within this patient. We did, however, find evidence of horizontal transfer of carbapenemase-encoding plasmids between K. pneumoniae, E. cloacae, and C. freundii in the hospital environment. Our data, including full plasmid identification, challenge assumptions about horizontal gene transfer events within patients and identify possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by K. pneumoniae, E. coli, E. cloacae, and Pantoea species, in unrelated patients and in the hospital environment.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Infección Hospitalaria , Enterobacteriaceae/enzimología , Plásmidos , beta-Lactamasas/biosíntesis , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Hospitales Públicos , Humanos , National Institutes of Health (U.S.) , Vigilancia de la Población , Reacción en Cadena en Tiempo Real de la Polimerasa , Estados Unidos
9.
Genome Biol ; 13(7): R64, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22830599

RESUMEN

BACKGROUND: While Staphylococcus epidermidis is commonly isolated from healthy human skin, it is also the most frequent cause of nosocomial infections on indwelling medical devices. Despite its importance, few genome sequences existed and the most frequent hospital-associated lineage, ST2, had not been fully sequenced. RESULTS: We cultivated 71 commensal S. epidermidis isolates from 15 skin sites and compared them with 28 nosocomial isolates from venous catheters and blood cultures. We produced 21 commensal and 9 nosocomial draft genomes, and annotated and compared their gene content, phylogenetic relatedness and biochemical functions. The commensal strains had an open pan-genome with 80% core genes and 20% variable genes. The variable genome was characterized by an overabundance of transposable elements, transcription factors and transporters. Biochemical diversity, as assayed by antibiotic resistance and in vitro biofilm formation, demonstrated the varied phenotypic consequences of this genomic diversity. The nosocomial isolates exhibited both large-scale rearrangements and single-nucleotide variation. We showed that S. epidermidis genomes separate into two phylogenetic groups, one consisting only of commensals. The formate dehydrogenase gene, present only in commensals, is a discriminatory marker between the two groups. CONCLUSIONS: Commensal skin S. epidermidis have an open pan-genome and show considerable diversity between isolates, even when derived from a single individual or body site. For ST2, the most common nosocomial lineage, we detect variation between three independent isolates sequenced. Finally, phylogenetic analyses revealed a previously unrecognized group of S. epidermidis strains characterized by reduced virulence and formate dehydrogenase, which we propose as a clinical molecular marker.


Asunto(s)
Infecciones Relacionadas con Catéteres/microbiología , Infección Hospitalaria/microbiología , Análisis de Secuencia de ADN/métodos , Piel/microbiología , Staphylococcus epidermidis/clasificación , Staphylococcus epidermidis/genética , Farmacorresistencia Bacteriana , Evolución Molecular , Variación Genética , Genoma Bacteriano , Humanos , Datos de Secuencia Molecular , Tipificación Molecular , Filogenia , Staphylococcus epidermidis/aislamiento & purificación
10.
Nat Genet ; 43(3): 189-96, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21258341

RESUMEN

Ciliary dysfunction leads to a broad range of overlapping phenotypes, collectively termed ciliopathies. This grouping is underscored by genetic overlap, where causal genes can also contribute modifier alleles to clinically distinct disorders. Here we show that mutations in TTC21B, which encodes the retrograde intraflagellar transport protein IFT139, cause both isolated nephronophthisis and syndromic Jeune asphyxiating thoracic dystrophy. Moreover, although resequencing of TTC21B in a large, clinically diverse ciliopathy cohort and matched controls showed a similar frequency of rare changes, in vivo and in vitro evaluations showed a significant enrichment of pathogenic alleles in cases (P < 0.003), suggesting that TTC21B contributes pathogenic alleles to ∼5% of ciliopathy cases. Our data illustrate how genetic lesions can be both causally associated with diverse ciliopathies and interact in trans with other disease-causing genes and highlight how saturated resequencing followed by functional analysis of all variants informs the genetic architecture of inherited disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Trastornos de la Motilidad Ciliar/genética , Animales , Variación Genética , Humanos , Ratones , Mutación , Linaje , Células Fotorreceptoras/fisiología , Pez Cebra/genética
11.
Science ; 324(5931): 1190-2, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19478181

RESUMEN

Human skin is a large, heterogeneous organ that protects the body from pathogens while sustaining microorganisms that influence human health and disease. Our analysis of 16S ribosomal RNA gene sequences obtained from 20 distinct skin sites of healthy humans revealed that physiologically comparable sites harbor similar bacterial communities. The complexity and stability of the microbial community are dependent on the specific characteristics of the skin site. This topographical and temporal survey provides a baseline for studies that examine the role of bacterial communities in disease states and the microbial interdependencies required to maintain healthy skin.


Asunto(s)
Bacterias/aislamiento & purificación , Metagenoma , Piel/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Adulto , Bacterias/clasificación , Bacterias/genética , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Biodiversidad , Femenino , Genes de ARNr , Humanos , Masculino , Datos de Secuencia Molecular , Filogenia , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S , Factores de Tiempo , Adulto Joven
12.
Genome Res ; 18(7): 1043-50, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18502944

RESUMEN

The many layers and structures of the skin serve as elaborate hosts to microbes, including a diversity of commensal and pathogenic bacteria that contribute to both human health and disease. To determine the complexity and identity of the microbes inhabiting the skin, we sequenced bacterial 16S small-subunit ribosomal RNA genes isolated from the inner elbow of five healthy human subjects. This analysis revealed 113 operational taxonomic units (OTUs; "phylotypes") at the level of 97% similarity that belong to six bacterial divisions. To survey all depths of the skin, we sampled using three methods: swab, scrape, and punch biopsy. Proteobacteria dominated the skin microbiota at all depths of sampling. Interpersonal variation is approximately equal to intrapersonal variation when considering bacterial community membership and structure. Finally, we report strong similarities in the complexity and identity of mouse and human skin microbiota. This study of healthy human skin microbiota will serve to direct future research addressing the role of skin microbiota in health and disease, and metagenomic projects addressing the complex physiological interactions between the skin and the microbes that inhabit this environment.


Asunto(s)
Bacterias/genética , Variación Genética , Piel/microbiología , Adulto , Anciano , Animales , ADN Bacteriano/análisis , ADN Bacteriano/genética , ADN Ribosómico/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , ARN Ribosómico 16S/genética
13.
Genome Res ; 17(6): 760-74, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17567995

RESUMEN

A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization.


Asunto(s)
Evolución Molecular , Genoma Humano , Mamíferos/genética , Sistemas de Lectura Abierta , Filogenia , Alineación de Secuencia , Animales , Proyecto Genoma Humano , Humanos
14.
Genome Res ; 16(6): 796-803, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16672307

RESUMEN

Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection Initiative. Here we present 10,967 full ORF verified cDNA clones (8049 from X. laevis and 2918 from X. tropicalis) as a community resource. Because the genome of X. laevis, but not X. tropicalis, has undergone allotetraploidization, comparison of coding sequences from these two clawed (pipid) frogs provides a unique angle for exploring the molecular evolution of duplicate genes. Within our clone set, we have identified 445 gene trios, each comprised of an allotetraploidization-derived X. laevis gene pair and their shared X. tropicalis ortholog. Pairwise dN/dS, comparisons within trios show strong evidence for purifying selection acting on all three members. However, dN/dS ratios between X. laevis gene pairs are elevated relative to their X. tropicalis ortholog. This difference is highly significant and indicates an overall relaxation of selective pressures on duplicated gene pairs. We have found that the paralogs that have been lost since the tetraploidization event are enriched for several molecular functions, but have found no such enrichment in the extant paralogs. Approximately 14% of the paralogous pairs analyzed here also show differential expression indicative of subfunctionalization.


Asunto(s)
Secuencia de Bases , Biblioteca de Genes , Poliploidía , Xenopus laevis/genética , Xenopus/genética , Animales , Evolución Molecular , Expresión Génica , Genes Duplicados , Genoma , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Filogenia , Homología de Secuencia de Ácido Nucleico
15.
Genome Res ; 13(1): 55-63, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12529306

RESUMEN

Duplications have long been postulated to be an important mechanism by which genomes evolve. Interspecies genomic comparisons are one method by which the origin and molecular mechanism of duplications can be inferred. By comparative mapping in human, mouse, and rat, we previously found evidence for a recent chromosome-fission event that occurred in the mouse lineage. Cytogenetic mapping revealed that the genomic segments flanking the fission site appeared to be duplicated, with copies residing near the centromere of multiple mouse chromosomes. Here we report the mapping and sequencing of the regions of mouse chromosomes 5 and 6 involved in this chromosome-fission event as well as the results of comparative sequence analysis with the orthologous human and rat genomic regions. Our data indicate that the duplications associated with mouse chromosomes 5 and 6 are recent and that the resulting duplicated segments share significant sequence similarity with a series of regions near the centromeres of the mouse chromosomes previously identified by cytogenetic mapping. We also identified pericentromeric duplicated segments shared between mouse chromosomes 5 and 1. Finally, novel mouse satellite sequences as well as putative chimeric transcripts were found to be associated with the duplicated segments. Together, these findings demonstrate that pericentromeric duplications are not restricted to primates and may be a common mechanism for genome evolution in mammals.


Asunto(s)
Centrómero/genética , Duplicación de Gen , Animales , Quimera/genética , Cromosomas/genética , Cromosomas Humanos/genética , Secuencia Conservada/genética , ADN Satélite/genética , Evolución Molecular , Marcadores Genéticos/genética , Humanos , Ratones , Mapeo Físico de Cromosoma/métodos , Ratas
16.
Genome Res ; 12(1): 3-15, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11779826

RESUMEN

Williams syndrome is a complex developmental disorder that results from the heterozygous deletion of a approximately 1.6-Mb segment of human chromosome 7q11.23. These deletions are mediated by large (approximately 300 kb) duplicated blocks of DNA of near-identical sequence. Previously, we showed that the orthologous region of the mouse genome is devoid of such duplicated segments. Here, we extend our studies to include the generation of approximately 3.3 Mb of genomic sequence from the mouse Williams syndrome region, of which just over 1.4 Mb is finished to high accuracy. Comparative analyses of the mouse and human sequences within and immediately flanking the interval commonly deleted in Williams syndrome have facilitated the identification of nine previously unreported genes, provided detailed sequence-based information regarding 30 genes residing in the region, and revealed a number of potentially interesting conserved noncoding sequences. Finally, to facilitate comparative sequence analysis, we implemented several enhancements to the program, including the addition of links from annotated features within a generated percent-identity plot to specific records in public databases. Taken together, the results reported here provide an important comparative sequence resource that should catalyze additional studies of Williams syndrome, including those that aim to characterize genes within the commonly deleted interval and to develop mouse models of the disorder.


Asunto(s)
Cromosomas Humanos Par 7/genética , Análisis de Secuencia de ADN/métodos , Homología de Secuencia de Ácido Nucleico , Síndrome de Williams/genética , Animales , Composición de Base , Secuencia Conservada/genética , Humanos , Ratones , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma
17.
Genome Res ; 14(11): 2235-44, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15479945

RESUMEN

Although the cost of generating draft-quality genomic sequence continues to decline, refining that sequence by the process of "sequence finishing" remains expensive. Near-perfect finished sequence is an appropriate goal for the human genome and a small set of reference genomes; however, such a high-quality product cannot be cost-justified for large numbers of additional genomes, at least for the foreseeable future. Here we describe the generation and quality of an intermediate grade of finished genomic sequence (termed comparative-grade finished sequence), which is tailored for use in multispecies sequence comparisons. Our analyses indicate that this sequence is very high quality (with the residual gaps and errors mostly falling within repetitive elements) and reflects 99% of the total sequence. Importantly, comparative-grade sequence finishing requires approximately 40-fold less reagents and approximately 10-fold less personnel effort compared to the generation of near-perfect finished sequence, such as that produced for the human genome. Although applied here to finishing sequence derived from individual bacterial artificial chromosome (BAC) clones, one could envision establishing routines for refining sequences emanating from whole-genome shotgun sequencing projects to a similar quality level. Our experience to date demonstrates that comparative-grade sequence finishing represents a practical and affordable option for sequence refinement en route to comparative analyses.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Mapeo Contig/economía , Exones/genética , Genoma , Análisis de Secuencia de ADN/economía , Programas Informáticos , Animales , Secuencia de Bases , Clonación Molecular , Biología Computacional , Mapeo Contig/métodos , Costos y Análisis de Costo , Bases de Datos Genéticas , Lemur/genética , Datos de Secuencia Molecular , Papio/genética , Ratas , Secuencias Repetitivas de Ácidos Nucleicos , Homología de Secuencia de Ácido Nucleico , Programas Informáticos/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA