Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39256896

RESUMEN

Turner syndrome, caused by complete or partial loss of an X-chromosome, is often accompanied by specific cognitive challenges. Magnetic resonance imaging studies of adults and children with Turner syndrome suggest these deficits reflect differences in anatomical and functional connectivity. However, no imaging studies have explored connectivity in infants with Turner syndrome. Consequently, it is unclear when in development connectivity differences emerge. To address this gap, we compared functional connectivity and white matter microstructure of 1-year-old infants with Turner syndrome to typically developing 1-year-old boys and girls. We examined functional connectivity between the right precentral gyrus and five regions that show reduced volume in 1-year old infants with Turner syndrome compared to controls and found no differences. However, exploratory analyses suggested infants with Turner syndrome have altered connectivity between right supramarginal gyrus and left insula and right putamen. To assess anatomical connectivity, we examined diffusivity indices along the superior longitudinal fasciculus and found no differences. However, an exploratory analysis of 46 additional white matter tracts revealed significant group differences in nine tracts. Results suggest that the first year of life is a window in which interventions might prevent connectivity differences observed at later ages, and by extension, some of the cognitive challenges associated with Turner syndrome.


Asunto(s)
Encéfalo , Vías Nerviosas , Síndrome de Turner , Sustancia Blanca , Humanos , Síndrome de Turner/patología , Síndrome de Turner/diagnóstico por imagen , Síndrome de Turner/fisiopatología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Femenino , Lactante , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Vías Nerviosas/patología , Imagen por Resonancia Magnética , Imagen de Difusión Tensora
2.
Cereb Cortex ; 33(8): 4829-4843, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36190430

RESUMEN

Functional magnetic resonance imaging has been used to identify complex brain networks by examining the correlation of blood-oxygen-level-dependent signals between brain regions during the resting state. Many of the brain networks identified in adults are detectable at birth, but genetic and environmental influences governing connectivity within and between these networks in early infancy have yet to be explored. We investigated genetic influences on neonatal resting-state connectivity phenotypes by generating intraclass correlations and performing mixed effects modeling to estimate narrow-sense heritability on measures of within network and between-network connectivity in a large cohort of neonate twins. We also used backwards elimination regression and mixed linear modeling to identify specific demographic and medical history variables influencing within and between network connectivity in a large cohort of typically developing twins and singletons. Of the 36 connectivity phenotypes examined, only 6 showed narrow-sense heritability estimates greater than 0.10, with none being statistically significant. Demographic and obstetric history variables contributed to between- and within-network connectivity. Our results suggest that in early infancy, genetic factors minimally influence brain connectivity. However, specific demographic and medical history variables, such as gestational age at birth and maternal psychiatric history, may influence resting-state connectivity measures.


Asunto(s)
Mapeo Encefálico , Encéfalo , Embarazo , Femenino , Humanos , Encéfalo/diagnóstico por imagen , Fenotipo , Descanso , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen
3.
Sci Rep ; 14(1): 13912, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886487

RESUMEN

DNA methylation is an epigenetic mark that plays an important role in defining cancer phenotypes, with global hypomethylation and focal hypermethylation at CpG islands observed in tumors. These methylation marks can also be used to define tumor types and provide an avenue for biomarker identification. The homeobox gene class is one that has potential for this use, as well as other genes that are Polycomb Repressive Complex 2 targets. To begin to unravel this relationship, we performed a pan-cancer DNA methylation analysis using sixteen Illumina HM450k array datasets from TCGA, delving into cancer-specific qualities and commonalities between tumor types with a focus on homeobox genes. Our comparisons of tumor to normal samples suggest that homeobox genes commonly harbor significant hypermethylated differentially methylated regions. We identified two homeobox genes, HOXA3 and HOXD10, that are hypermethylated in all 16 cancer types. Furthermore, we identified several potential homeobox gene biomarkers from our analysis that are uniquely methylated in only one tumor type and that could be used as screening tools in the future. Overall, our study demonstrates unique patterns of DNA methylation in multiple tumor types and expands on the interplay between the homeobox gene class and oncogenesis.


Asunto(s)
Metilación de ADN , Proteínas de Homeodominio , Neoplasias , Humanos , Neoplasias/genética , Proteínas de Homeodominio/genética , Genes Homeobox , Regulación Neoplásica de la Expresión Génica , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Islas de CpG , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Epigénesis Genética , Biomarcadores de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA