Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Chem Biol ; 19(11): 1423-1431, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37653170

RESUMEN

The modification of intracellular proteins with O-linked ß-N-acetylglucosamine (O-GlcNAc) moieties is a highly dynamic process that spatiotemporally regulates nearly every important cellular program. Despite its significance, little is known about the substrate recognition and regulation modes of O-GlcNAc transferase (OGT), the primary enzyme responsible for O-GlcNAc addition. In this study, we identified the intervening domain (Int-D), a poorly understood protein fold found only in metazoan OGTs, as a specific regulator of OGT protein-protein interactions and substrate modification. Using proteomic peptide phage display (ProP-PD) coupled with structural, biochemical and cellular characterizations, we discovered a strongly enriched peptide motif, employed by the Int-D to facilitate specific O-GlcNAcylation. We further show that disruption of Int-D binding dysregulates important cellular programs, including response to nutrient deprivation and glucose metabolism. These findings illustrate a mode of OGT substrate recognition and offer key insights into the biological roles of this unique domain.


Asunto(s)
Proteínas , Proteómica , Animales , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Péptidos
2.
Chemistry ; 26(53): 12086-12100, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32207184

RESUMEN

The O-linked ß-N-acetylglucosamine (O-GlcNAc) modification, termed O-GlcNAcylation, is an essential and dynamic post-translational modification in cells. O-GlcNAc transferase (OGT) installs this modification on serine and threonine residues, whereas O-GlcNAcase (OGA) hydrolyzes it. O-GlcNAc modifications are found on thousands of intracellular proteins involved in diverse biological processes. Dysregulation of O-GlcNAcylation and O-GlcNAc cycling enzymes has been detected in many diseases, including cancer, diabetes, cardiovascular and neurodegenerative diseases. Here, recent advances in the development of molecular tools to investigate OGT and OGA functions and substrate recognition are discussed. New chemical approaches to study O-GlcNAc dynamics and its potential roles in the immune system are also highlighted. It is hoped that this minireview will encourage more research in these areas to advance the understanding of O-GlcNAc in biology and diseases.


Asunto(s)
Acetilglucosamina/química , N-Acetilglucosaminiltransferasas , beta-N-Acetilhexosaminidasas , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Serina/química , Treonina/química
3.
Res Sq ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36778302

RESUMEN

The modification of intracellular proteins with O-linked ß- N -acetylglucosamine (O-GlcNAc) moieties is a highly dynamic process that spatiotemporally regulates nearly every important cellular program. Despite its significance, little is known about the substrate recognition and regulation modes of O-GlcNAc transferase (OGT), the primary enzyme responsible for O-GlcNAc addition. In this study, we have identified the intervening domain (Int-D), a poorly understood protein fold found only in metazoan OGTs, as a specific regulator of OGT protein-protein interactions and substrate modification. Utilizing an innovative proteomic peptide phage display (ProP-PD) coupled with structural, biochemical, and cellular characterizations, we discovered a novel peptide motif, employed by the Int-D to facilitate specific O-GlcNAcylation. We further show that disruption of Int-D binding dysregulates important cellular programs including nutrient stress response and glucose metabolism. These findings illustrate a novel mode of OGT substrate recognition and offer the first insights into the biological roles of this unique domain.

4.
Chem Commun (Camb) ; 53(95): 12778-12781, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29139494
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA