Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1340: 237-246, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34569028

RESUMEN

The deadliest malaria parasite of humans, Plasmodium falciparum, is an obligate parasite that has had to develop mechanisms for survival under the unfavourable conditions it confronts within host cells. The chapters in the book "Heat Shock Proteins of Malaria" provide a critique of the evidence that heat shock proteins (Hsps) play a key role in the survival of P. falciparum in host cells. The role of the plasmodial Hsp arsenal is not limited to the protection of the parasite cell (largely through their role as molecular chaperones), as some of these proteins also promote the pathological development of malaria. This is largely due to the export of a large number of these proteins into the infected erythrocyte cytosol. Although P. falciparum erythrocyte membrane protein 1 (PfEMP1) is the main virulence factor for the malaria parasite, some of the exported plasmodial Hsps appear to augment parasite virulence. While this book largely delves into experimentally validated information on the role of Hsps in the development and pathogenicity of malaria, some of the information is based on hypotheses yet to be fully tested. Therefore, here we highlight what we know to be definite roles of plasmodial Hsps. Furthermore, we distill information that could provide practical insights on the options available for future research directions, including interventions against malaria that may target the role of Hsps in the development of the disease.


Asunto(s)
Malaria Falciparum , Malaria , Eritrocitos/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Plasmodium falciparum , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
2.
Adv Exp Med Biol ; 1340: 97-123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34569022

RESUMEN

Plasmodium falciparum has dedicated an unusually large proportion of its genome to molecular chaperones (2% of all genes), with the heat shock protein 40 (Hsp40) family (now called J domain proteins, JDPs) exhibiting evolutionary radiation into 49 members. A large number of the P. falciparum JDPs (PfJDPs) are predicted to be exported, with certain members shown experimentally to be present in the erythrocyte cytosol (PFA0660w and PFE0055c) or erythrocyte membrane (ring-infected erythrocyte surface antigen, RESA). PFA0660w and PFE0055c are associated with an exported plasmodial Hsp70 (PfHsp70-x) within novel mobile structures called J-dots, which have been proposed to be dedicated to the trafficking of key membrane proteins such as erythrocyte membrane protein 1 (PfEMP1). Well over half of the PfJDPs appear to be essential, including the J-dot PfJDP, PFE0055c, while others have been found to be required for growth under febrile conditions (e.g. PFA0110w, the ring-infected erythrocyte surface antigen protein [RESA]) or involved in pathogenesis (e.g. PF10_0381 has been shown to be important for protrusions of the infected red blood cell membrane, the so-called knobs). Here we review what is known about those PfJDPs that have been well characterised, and may be directly or indirectly involved in the survival and pathogenesis of the malaria parasite.


Asunto(s)
Proteínas del Choque Térmico HSP40 , Plasmodium falciparum , Eritrocitos , Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
3.
Mar Drugs ; 18(2)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012664

RESUMEN

The Trypanosoma brucei Hsp70/J-protein machinery plays an essential role in survival, differentiation, and pathogenesis of the protozoan parasite, and is an emerging target against African Trypanosomiasis. This study evaluated a set of small molecules, inspired by the malonganenones and nuttingins, as modulators of the chaperone activity of the cytosolic heat inducible T. brucei Hsp70 and constitutive TbHsp70.4 proteins. The compounds were assessed for cytotoxicity on both the bloodstream form of T. b. brucei parasites and a mammalian cell line. The compounds were then investigated for their modulatory effect on the aggregation suppression and ATPase activities of the TbHsp70 proteins. A structure-activity relationship for the malonganenone-class of alkaloids is proposed based upon these results.


Asunto(s)
Antozoos , Productos Biológicos/farmacología , Proteínas HSP70 de Choque Térmico , Trypanosoma brucei brucei , Animales , Relación Estructura-Actividad , Tripanosomiasis Africana
4.
Nature ; 496(7445): 311-6, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23598338

RESUMEN

The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.


Asunto(s)
Evolución Biológica , Peces/clasificación , Peces/genética , Genoma/genética , Animales , Animales Modificados Genéticamente , Embrión de Pollo , Secuencia Conservada/genética , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Extremidades/anatomía & histología , Extremidades/crecimiento & desarrollo , Peces/anatomía & histología , Peces/fisiología , Genes Homeobox/genética , Genómica , Inmunoglobulina M/genética , Ratones , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Vertebrados/anatomía & histología , Vertebrados/genética , Vertebrados/fisiología
5.
Exp Parasitol ; 198: 7-16, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30682336

RESUMEN

Plasmodium falciparum histone deacetylases (PfHDACs) are an important class of epigenetic regulators that alter protein lysine acetylation, contributing to regulation of gene expression and normal parasite growth and development. PfHDACs are therefore under investigation as drug targets for malaria. Despite this, our understanding of the biological roles of these enzymes is only just beginning to emerge. In higher eukaryotes, HDACs function as part of multi-protein complexes and act on both histone and non-histone substrates. Here, we present a proteomics analysis of PfHDAC1 immunoprecipitates, identifying 26 putative P. falciparum complex proteins in trophozoite-stage asexual intraerythrocytic parasites. The co-migration of two of these (P. falciparum heat shock proteins 70-1 and 90) with PfHDAC1 was validated using Blue Native PAGE combined with Western blot. These data provide a snapshot of possible PfHDAC1 interactions and a starting point for future studies focused on elucidating the broader function of PfHDACs in Plasmodium parasites.


Asunto(s)
Histona Desacetilasa 1/análisis , Plasmodium falciparum/enzimología , Proteómica , Proteínas Protozoarias/química , Western Blotting , Electroforesis en Gel de Poliacrilamida , Histona Desacetilasa 1/química , Inmunoprecipitación , Espectrometría de Masas/métodos
6.
Subcell Biochem ; 78: 69-90, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25487016

RESUMEN

The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrP(C). The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrP(C). While Hop has been shown to have various cellular functions, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseases states.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Priones/metabolismo , Animales , Proteínas de Choque Térmico/química , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Neoplasias/metabolismo , Enfermedades Parasitarias/metabolismo , Priones/química , Conformación Proteica , Pliegue de Proteína , Deficiencias en la Proteostasis/metabolismo , Transducción de Señal , Relación Estructura-Actividad
7.
Cancer Metastasis Rev ; 33(1): 101-13, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24338005

RESUMEN

Despite advanced screening technology and cancer treatments available today, metastasis remains an ongoing major cause of cancer-related deaths worldwide. Typically, colorectal cancer is one of the cancers treatable by surgery in conjunction with chemotherapy when it is detected at an early stage. However, it still ranks as the second highest modality and mortality of cancer types in western countries, and this is mostly due to a recurrence of metastatic colorectal cancer post-resection of the primary malignancy. Colorectal cancer metastases predominantly occur in the liver and lung, and yet the molecular mechanisms that regulate these organ-specific colorectal cancer metastases are largely unknown. Therefore, the identification of any critical molecule, which triggers malignancy in colorectal cancer, would be an excellent target for treatment. Netrin-1 was initially discovered as a chemotropic neuronal guidance molecule, and has been marked as a regulator for many cancers including colorectal cancer. Here, we summarise key findings of the role of netrin-1 intrinsic to colorectal cancer cells, extrinsic to the tumour microenvironment and angiogenesis, and consequently, we evaluate netrin-1 as a potential target molecule for metastasis.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Factores de Crecimiento Nervioso/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Movimiento Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Modelos Biológicos , Metástasis de la Neoplasia , Netrina-1 , Transducción de Señal/efectos de los fármacos
8.
Biol Chem ; 395(11): 1353-62, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24854538

RESUMEN

Plasmodial heat shock protein 70 (Hsp70) chaperones represent a promising new class of antimalarial drug targets because of the important roles they play in the survival and pathogenesis of the malaria parasite Plasmodium falciparum. This study assessed a set of small molecules (lapachol, bromo-ß-lapachona and malonganenones A, B and C) as potential modulators of two biologically important plasmodial Hsp70s, the parasite-resident PfHsp70-1 and the exported PfHsp70-x. Compounds of interest were assessed for modulatory effects on the steady-state basal and heat shock protein 40 (Hsp40)-stimulated ATPase activities of PfHsp70-1, PfHsp70-x and human Hsp70, as well as on the protein aggregation suppression activity of PfHsp70-x. The antimalarial marine alkaloid malonganenone A was of particular interest, as it was found to have limited cytotoxicity to mammalian cell lines and exhibited the desired properties of an effective plasmodial Hsp70 modulator. This compound was found to inhibit plasmodial and not human Hsp70 ATPase activity (Hsp40-stimulated), and hindered the aggregation suppression activity of PfHsp70-x. Furthermore, malonganenone A was shown to disrupt the interaction between PfHsp70-x and Hsp40. This is the first report to show that PfHsp70-x has chaperone activity, is stimulated by Hsp40 and can be specifically modulated by small molecule compounds.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Alcaloides/química , Alcaloides/farmacología , Línea Celular , Humanos , Malaria Falciparum/tratamiento farmacológico , Naftoquinonas/química , Naftoquinonas/farmacología , Plasmodium falciparum/metabolismo , Agregado de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
10.
Cell Stress Chaperones ; 29(2): 326-337, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518861

RESUMEN

Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis.


Asunto(s)
Antimaláricos , Malaria , Humanos , Proteínas de Choque Térmico/metabolismo , Plasmodium falciparum/metabolismo , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Protozoarias/metabolismo
11.
Cell Stress Chaperones ; 29(1): 21-33, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38320449

RESUMEN

J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Polonia , Proteínas del Choque Térmico HSP40/metabolismo
12.
Cell Stress Chaperones ; 29(1): 143-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38311120

RESUMEN

Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.


Asunto(s)
Proteínas de Choque Térmico , Medicina , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Respuesta al Choque Térmico/genética , Biología
13.
Cancer Cell Int ; 13(1): 39, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23631621

RESUMEN

BACKGROUND: The cancer stem cell (CSC) theory proposes that tumours arise from and are sustained by a subpopulation of cells with both cancer and stem cell properties. One of the key hallmarks of CSCs is the ability to grow anchorage-independently under serum-free culture conditions resulting in the formation of tumourspheres. It has further been reported that these cells are resistant to traditional chemotherapeutic agents. METHODS: In this study, the tumoursphere assay was validated in MCF-7 cells and used to screen novel marine algal compounds for potential anti-cancer stem cell (CSC) activity in vitro. RESULTS: MCF-7 breast cancer cells were observed to generate tumourspheres or mammospheres after 3-5 days growth in anchorage-independent conditions and an apparent enrichment in potential CSCs was observed by an increase in the proportion of CD44high/CD24low marker-bearing cells and Oct4 expression compared to those in the bulk population grown in regular adherent conditions. Using this assay, a set of algal metabolites was screened for the ability to inhibit mammosphere development as a measure of potential anti-CSC activity. We report that the polyhalogenated monoterpene stereoisomers RU017 and RU018 isolated from the red alga Plocamium cornutum, both of which displayed no cytotoxicity against either adherent MCF-7 breast cancer or MCF-12A non-transformed breast epithelial cells, were able to prevent MCF-7 mammosphere formation in vitro. On the other hand, neither the brown algal carotenoid fucoxanthin nor the chemotherapeutic paclitaxel, both of which were toxic to adherent MCF-7 and MCF-12A cells, were able to inhibit mammosphere formation. In fact, pre-treatment with paclitaxel appeared to enhance mammosphere formation and development, a finding which is consistent with the reported resistance of CSCs to traditional chemotherapeutic agents. CONCLUSION: Due to the proposed clinical significance of CSC in terms of tumour initiation and metastasis, the identification of agents able to inhibit this subpopulation has clinical significance.

14.
Cell Microbiol ; 14(11): 1784-95, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22925632

RESUMEN

Malaria parasites modify their host cell, the mature human erythrocyte. We are interested in the molecules mediating these processes, and have recently described a family of parasite-encoded heat shock proteins (PfHsp40s) that are targeted to the host cell, and implicated in host cell modification. Hsp40s generally function as co-chaperones of members of the Hsp70 family, and until now it was thought that human Hsp70 acts as the PfHsp40 interaction partner within the host cell. Here we revise this hypothesis, and identify and characterize an exported parasite-encoded Hsp70, referred to as PfHsp70-x. PfHsp70-x is exported to the host erythrocyte where it forms a complex with PfHsp40s in structures known as J-dots, and is closely associated with PfEMP1. Interestingly, Hsp70-x is encoded only by parasite species that export the major virulence factor EMP1, implying a possible role for Hsp70-x in EMP1 presentation at the surface of the infected erythrocyte. Our data strongly support the presence of parasite-encoded chaperone/co-chaperone complexes within the host erythrocyte, which are involved in protein traffic through the host cell. The host-pathogen interaction within the infected erythrocyte is more complex than previously thought, and is driven notonly by parasite co-chaperones, but also by the parasite-encoded chaperone Hsp70-x itself.


Asunto(s)
Eritrocitos/química , Eritrocitos/parasitología , Proteínas del Choque Térmico HSP40/análisis , Proteínas HSP70 de Choque Térmico/análisis , Interacciones Huésped-Patógeno , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/análisis , ADN Protozoario/química , ADN Protozoario/genética , Humanos , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Análisis de Secuencia de ADN
15.
Bioorg Med Chem ; 21(14): 4332-41, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23735832

RESUMEN

DOXP-reductoisomerase (DXR) is a validated target for the development of antimalarial drugs to address the increase in resistant strains of Plasmodium falciparum. Series of aryl- and heteroarylcarbamoylphosphonic acids, their diethyl esters and disodium salts have been prepared as analogues of the potent DXR inhibitor fosmidomycin. The effects of the carboxamide N-substituents and the length of the methylene linker have been explored using in silico docking studies, saturation transfer difference NMR spectroscopy and enzyme inhibition assays using both EcDXR and PfDXR. These studies indicate an optimal linker length of two methylene units and have confirmed the importance of an additional binding pocket in the PfDXR active site. Insights into the constraints of the PfDXR binding site provide additional scope for the rational design of DXR inhibitors with increased ligand-receptor interactions.


Asunto(s)
Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/química , Amidas/síntesis química , Carbamatos/síntesis química , Diseño de Fármacos , Isomerasas Aldosa-Cetosa/metabolismo , Amidas/química , Amidas/farmacología , Sitios de Unión , Carbamatos/química , Carbamatos/farmacología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Unión Proteica/efectos de los fármacos
16.
Methods Mol Biol ; 2693: 105-111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540430

RESUMEN

The development of mutant microorganisms lacking J domain proteins (JDPs; formerly called Hsp40s) has enabled the development of complementation assays for testing the co-chaperone function of JDPs. In these assays, an exogenously expressed novel JDP is tested for its ability to functionally substitute for a non-expressed or nonfunctional endogenous JDP(s) by reversing a stress phenotype. For example, the in vivo functionality of prokaryotic JDPs can be tested on the basis of their ability to reverse the thermosensitivity of a dnaJ cbpA mutant strain of the bacterium Escherichia coli (OD259). Similarly, the in vivo functionality of eukaryotic JDPs can be assessed in a thermosensitive ydj1 mutant strain of the yeast Saccharomyces cerevisiae (JJ160). Here we outline the use of these thermosensitive microorganisms in complementation assays to functionally characterize a JDP from the bacterium, Agrobacterium tumefaciens (AgtDnaJ), and a JDP from the trypanosomal parasite, Trypanosoma cruzi (TcJ2).


Asunto(s)
Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Escherichia coli/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Escherichia coli/metabolismo
17.
Methods Mol Biol ; 2693: 95-103, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540429

RESUMEN

Protein-protein interactions (PPI) in cells play a pivotal role in cellular function and dynamics. Cellular proteostasis is maintained by PPI networks between molecular chaperones, co-chaperones, and client proteins. Consequently, strategies to visualize and analyze PPI in cells are useful in understanding protein homeostasis regulation. The Bimolecular Fluorescence Complementation (BiFC) assay has emerged as a useful tool for studying PPI between proteins in live or fixed cells. BiFC is based on the detection of fluorescence generated when interacting protein pairs, produced as fusion proteins with either the N- or C-terminal fragment of a fluorescent protein, are in sufficient proximity to permit reconstitution of the split fluorophore. Here, we describe the application of the BiFC assay to a model of chaperone-client interactions using Hsp90 and the validated client protein CDK4. This assay allows for the distribution and spatiotemporal analysis of HSP90-CDK4 complexes in live or fixed cells and is amenable to studying the effects of inhibitors and mutations on chaperone-client protein networks.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas , Humanos , Fluorescencia , Microscopía Fluorescente , Fenómenos Fisiológicos Celulares , Proteínas Luminiscentes/genética
18.
Front Mol Biosci ; 10: 1216192, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457831

RESUMEN

Cellular proteostasis requires a network of molecular chaperones and co-chaperones, which facilitate the correct folding and assembly of other proteins, or the degradation of proteins misfolded beyond repair. The function of the major chaperones, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90), is regulated by a cohort of co-chaperone proteins. The J domain protein (JDP) family is one of the most diverse co-chaperone families, playing an important role in functionalizing the Hsp70 chaperone system to form a powerful protein quality control network. The intracellular malaria parasite, Plasmodium falciparum, has evolved the capacity to invade and reboot mature human erythrocytes, turning them into a vehicles of pathology. This process appears to involve the harnessing of both the human and parasite chaperone machineries. It is well known that malaria parasite-infected erythrocytes are highly enriched in functional human Hsp70 (HsHsp70) and Hsp90 (HsHsp90), while recent proteomics studies have provided evidence that human JDPs (HsJDPs) may also be enriched, but at lower levels. Interestingly, P. falciparum JDPs (PfJDPs) are the most prominent and diverse family of proteins exported into the infected erythrocyte cytosol. We hypothesize that the exported PfJPDs may be an evolutionary consequence of the need to boost chaperone power for specific protein folding pathways that enable both survival and pathogenesis of the malaria parasite. The evidence suggests that there is an intricate network of PfJDP interactions with the exported malarial Hsp70 (PfHsp70-x) and HsHsp70, which appear to be important for the trafficking of key malarial virulence factors, and the proteostasis of protein complexes of human and parasite proteins associated with pathology. This review will critically evaluate the current understanding of the role of exported PfJDPs in pathological exploitation of the proteostasis machinery by fine-tuning the chaperone properties of both human and malarial Hsp70s.

19.
Front Mol Biosci ; 10: 1158912, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621993

RESUMEN

Plasmodium falciparum is a unicellular, intracellular protozoan parasite, and the causative agent of malaria in humans, a deadly vector borne infectious disease. A key phase of malaria pathology, is the invasion of human erythrocytes, resulting in drastic remodeling by exported parasite proteins, including molecular chaperones and co-chaperones. The survival of the parasite within the human host is mediated by P. falciparum heat shock protein 70s (PfHsp70s) and J domain proteins (PfJDPs), functioning as chaperones-co-chaperones partnerships. Two complexes have been shown to be important for survival and pathology of the malaria parasite: PfHsp70-x-PFE0055c (exported); and PfHsp70-2-PfSec63 (endoplasmic reticulum). Virtual screening was conducted on the drug repurposing library, the Pandemic Response Box, to identify small-molecules that could specifically disrupt these chaperone complexes. Five top ranked compounds possessing preferential binding affinity for the malarial chaperone system compared to the human system, were identified; three top PfHsp70-PfJDP binders, MBX 1641, zoliflodacin and itraconazole; and two top J domain binders, ezetimibe and a benzo-diazepinone. These compounds were validated by repeat molecular dockings and molecular dynamics simulation, resulting in all the compounds, except for MBX 1461, being confirmed to bind preferentially to the malarial chaperone system. A detailed contact analysis of the PfHsp70-PfJDP binders identified two different types of modulators, those that potentially inhibit complex formation (MBX 1461), and those that potentially stabilize the complex (zoliflodacin and itraconazole). These data suggested that zoliflodacin and itraconazole are potential novel modulators specific to the malarial system. A detailed contact analysis of the J domain binders (ezetimibe and the benzo-diazepinone), revealed that they bound with not only greater affinity but also a better pose to the malarial J domain compared to that of the human system. These data suggested that ezetimibe and the benzo-diazepinone are potential specific inhibitors of the malarial chaperone system. Both itraconazole and ezetimibe are FDA-approved drugs, possess anti-malarial activity and have recently been repurposed for the treatment of cancer. This is the first time that such drug-like compounds have been identified as potential modulators of PfHsp70-PfJDP complexes, and they represent novel candidates for validation and development into anti-malarial drugs.

20.
Commun Biol ; 6(1): 752, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468602

RESUMEN

Using protein structure to predict function, interactions, and evolutionary history is still an open challenge, with existing approaches relying extensively on protein homology and families. Here, we present Machaon, a data-driven method combining orientation invariant metrics on phi-psi angles, inter-residue contacts and surface complexity. It can be readily applied on whole structures or segments-such as domains and binding sites. Machaon was applied on SARS-CoV-2 Spike monomers of native, Delta and Omicron variants and identified correlations with a wide range of viral proteins from close to distant taxonomy ranks, as well as host proteins, such as ACE2 receptor. Machaon's meta-analysis of the results highlights structural, chemical and transcriptional similarities between the Spike monomer and human proteins, indicating a multi-level viral mimicry. This extended analysis also revealed relationships of the Spike protein with biological processes such as ubiquitination and angiogenesis and highlighted different patterns in virus attachment among the studied variants. Available at: https://machaonweb.com .


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sitios de Unión , Receptores Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA