Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Biol ; 19(8): e3001108, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34375335

RESUMEN

Sharks (Selachimorpha) are iconic marine predators that have survived multiple mass extinctions over geologic time. Their prolific fossil record is represented mainly by isolated shed teeth, which provide the basis for reconstructing deep time diversity changes affecting different selachimorph clades. By contrast, corresponding shifts in shark ecology, as measured through morphological disparity, have received comparatively limited analytical attention. Here, we use a geometric morphometric approach to comprehensively examine tooth morphologies in multiple shark lineages traversing the catastrophic end-Cretaceous mass extinction-this event terminated the Mesozoic Era 66 million years ago. Our results show that selachimorphs maintained virtually static levels of dental disparity in most of their constituent clades across the Cretaceous-Paleogene interval. Nevertheless, selective extinctions did impact apex predator species characterized by triangular blade-like teeth. This is particularly evident among lamniforms, which included the dominant Cretaceous anacoracids. Conversely, other groups, such as carcharhiniforms and orectolobiforms, experienced disparity modifications, while heterodontiforms, hexanchiforms, squaliforms, squatiniforms, and †synechodontiforms were not overtly affected. Finally, while some lamniform lineages disappeared, others underwent postextinction disparity increases, especially odontaspidids, which are typified by narrow-cusped teeth adapted for feeding on fishes. Notably, this increase coincides with the early Paleogene radiation of teleosts as a possible prey source, and the geographic relocation of disparity sampling "hotspots," perhaps indicating a regionally disjunct extinction recovery. Ultimately, our study reveals a complex morphological response to the end-Cretaceous mass extinction and highlights an event that influenced the evolution of modern sharks.


Asunto(s)
Evolución Biológica , Extinción Biológica , Fósiles/anatomía & histología , Tiburones/anatomía & histología , Diente/anatomía & histología , Animales , Ecosistema
2.
Nature ; 539(7628): 237-241, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27750278

RESUMEN

The teeth of gnathostomes (jawed vertebrates) show rigidly patterned, unidirectional replacement that may or may not be associated with a shedding mechanism. These mechanisms, which are critical for the maintenance of the dentition, are incongruently distributed among extant gnathostomes. Although a permanent tooth-generating dental lamina is present in all chondrichthyans, many tetrapods and some teleosts, it is absent in the non-teleost actinopterygians. Tooth-shedding by basal hard tissue resorption occurs in most osteichthyans (including tetrapods) but not in chondrichthyans. Here we report a three-dimensional virtual dissection of the dentition of a 424-million-year-old stem osteichthyan, Andreolepis hedei, using propagation phase-contrast synchrotron microtomography, with a reconstruction of its growth history. Andreolepis, close to the common ancestor of all extant osteichthyans, shed its teeth by basal resorption but probably lacked a permanent dental lamina. This is the earliest documented instance of resorptive tooth shedding and may represent the primitive osteichthyan mode of tooth replacement.


Asunto(s)
Peces , Fósiles , Diente/anatomía & histología , Diente/crecimiento & desarrollo , Animales , Maxilares/anatomía & histología , Microscopía de Contraste de Fase , Sincrotrones , Tomografía
3.
Nature ; 502(7470): 188-93, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24067611

RESUMEN

The gnathostome (jawed vertebrate) crown group comprises two extant clades with contrasting character complements. Notably, Chondrichthyes (cartilaginous fish) lack the large dermal bones that characterize Osteichthyes (bony fish and tetrapods). The polarities of these differences, and the morphology of the last common ancestor of crown gnathostomes, are the subject of continuing debate. Here we describe a three-dimensionally preserved 419-million-year-old placoderm fish from the Silurian of China that represents the first stem gnathostome with dermal marginal jaw bones (premaxilla, maxilla and dentary), features previously restricted to Osteichthyes. A phylogenetic analysis places the new form near the top of the gnathostome stem group but does not fully resolve its relationships to other placoderms. The analysis also assigns all acanthodians to the chondrichthyan stem group. These results suggest that the last common ancestor of Chondrichthyes and Osteichthyes had a macromeric dermal skeleton, and provide a new framework for studying crown gnathostome divergence.


Asunto(s)
Peces/anatomía & histología , Peces/clasificación , Fósiles , Maxilares/anatomía & histología , Filogenia , Animales , China , Especificidad de la Especie
4.
Nature ; 453(7199): 1199-204, 2008 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-18580942

RESUMEN

The gap in our understanding of the evolutionary transition from fish to tetrapod is beginning to close thanks to the discovery of new intermediate forms such as Tiktaalik roseae. Here we narrow it further by presenting the skull, exceptionally preserved braincase, shoulder girdle and partial pelvis of Ventastega curonica from the Late Devonian of Latvia, a transitional intermediate form between the 'elpistostegids' Panderichthys and Tiktaalik and the Devonian tetrapods (limbed vertebrates) Acanthostega and Ichthyostega. Ventastega is the most primitive Devonian tetrapod represented by extensive remains, and casts light on a part of the phylogeny otherwise only represented by fragmentary taxa: it illuminates the origin of principal tetrapod structures and the extent of morphological diversity among the transitional forms.


Asunto(s)
Evolución Biológica , Peces/anatomía & histología , Animales , Fósiles , Huesos Pélvicos/anatomía & histología , Filogenia , Hombro/anatomía & histología , Cráneo/anatomía & histología
5.
Nature ; 448(7153): 583-6, 2007 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-17671501

RESUMEN

Extant jawed vertebrates, or gnathostomes, fall into two major monophyletic groups, namely chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods). Fossil representatives of the osteichthyan crown group are known from the latest Silurian period, 418 million years (Myr) ago, to the present. By contrast, stem chondrichthyans and stem osteichthyans are still largely unknown. Two extinct Palaeozoic groups, the acanthodians and placoderms, may fall into these stem groups or the common stem group of gnathostomes, but their relationships and monophyletic status are both debated. Here we report unambiguous evidence for osteichthyan characters in jaw bones referred to the late Silurian (423-416-Myr-old) fishes Andreolepis hedei and Lophosteus superbus, long known from isolated bone fragments, scales and teeth, and whose affinities to, or within, osteichthyans have been debated. The bones are a characteristic osteichthyan maxillary and dentary, but the organization of the tooth-like denticles they bear differs from the large, conical teeth of crown-group osteichthyans, indicating that they can be assigned to the stem group. Andreolepis and Lophosteus are thus not only the oldest but also the most phylogenetically basal securely identified osteichthyans known so far.


Asunto(s)
Peces/anatomía & histología , Peces/clasificación , Maxilares/anatomía & histología , Filogenia , Diente/anatomía & histología , Animales , Fósiles , Historia Antigua , Factores de Tiempo
6.
Biol Lett ; 8(5): 833-7, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22628098

RESUMEN

Theories on the development and evolution of teeth have long been biased by the fallacy that chondrichthyans reflect the ancestral condition for jawed vertebrates. However, correctly resolving the nature of the primitive vertebrate dentition is challenged by a dearth of evidence on dental development in primitive osteichthyans. Jaw elements from the Silurian-Devonian stem-osteichthyans Lophosteus and Andreolepis have been described to bear a dentition arranged in longitudinal rows and vertical files, reminiscent of a pattern of successional development. We tested this inference, using synchrotron radiation X-ray tomographic microscopy (SRXTM) to reveal the pattern of skeletal development preserved in the sclerochronology of the mineralized tissues. The tooth-like tubercles represent focal elaborations of dentine within otherwise continuous sheets of the dermal skeleton, present in at least three stacked generations. Thus, the tubercles are not discrete modular teeth and their arrangement into rows and files is a feature of the dermal ornamentation that does not reflect a polarity of development or linear succession. These fossil remains have no bearing on the nature of the dentition in osteichthyans and, indeed, our results raise questions concerning the homologies of these bones and the phylogenetic classification of Andreolepis and Lophosteus.


Asunto(s)
Maxilares/anatomía & histología , Odontogénesis , Diente/fisiología , Vertebrados/fisiología , Animales , Evolución Biológica , Dentina/fisiología , Dentición , Fósiles , Maxilares/fisiología , Filogenia , Propiedades de Superficie , Sincrotrones , Diente/crecimiento & desarrollo , Microtomografía por Rayos X/métodos
7.
Nature ; 437(7055): 137-40, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16136143

RESUMEN

Ichthyostega was the first Devonian tetrapod to be subject to a whole-body reconstruction. It remains, together with Acanthostega, one of only two Devonian tetrapods for which near-complete postcranial material is available. It is thus crucially important for our understanding of the earliest stages of tetrapod evolution and terrestrialization. Here we show a new reconstruction of Ichthyostega based on extensive re-examination of original material and augmented by recently collected specimens. Our reconstruction differs substantially from those previously published and reveals hitherto unrecognized regionalization in the vertebral column. Ichthyostega is the earliest vertebrate to show obvious adaptations for non-swimming locomotion. Uniquely among early tetrapods, the presacral vertebral column shows pronounced regionalization of neural arch morphology, suggesting that it was adapted for dorsoventral rather than lateral flexion.


Asunto(s)
Anfibios/anatomía & histología , Fósiles , Esqueleto , Anfibios/fisiología , Animales , Ambiente , Miembro Posterior/anatomía & histología , Historia Antigua , Locomoción/fisiología , Huesos Pélvicos/anatomía & histología , Hombro/anatomía & histología , Cráneo/anatomía & histología , Columna Vertebral/anatomía & histología , Factores de Tiempo
8.
J Morphol ; 282(8): 1141-1157, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33848014

RESUMEN

Thyestiids are a group of osteostracans (sister-group to jawed vertebrates) ranging in time from the early Silurian to Middle Devonian. Tremataspis is unique among thyestiids in having a continuous mesodentine and enameloid cover on its dermal elements, and an embedded pore-canal system divided into lower and upper parts by a perforated septum. The origin of this upper mesh canal system and its potential homology to similar canal systems of other osteostracans has remained a matter of debate. To investigate this, we use synchrotron radiation microtomography data of four species of Tremataspis and three other thyestiid genera. Procephalaspis oeselensis lacks an upper mesh canal system entirely, but Aestiaspis viitaensis has partially enclosed upper canals formed between slightly modified tubercles that generally only cover separate pore fields. Further modification of tubercles in Dartmuthia gemmifera forms a more extensive, semi-enclosed upper mesh canal system that overlies an extensive perforated septum, similar to that found in Tremataspis. Lower mesh canals in P. oeselensis are radially arranged and buried tubercles indicate a continuous growth and addition of dermal hard tissues. These features are lacking to varying degrees in the other investigated thyestiids, and Tremataspis probably had a determinate growth accompanied by a single mineralization phase of its dermal hard tissues. The previously proposed homology between the semi-enclosed upper canal system in Dartmuthia to the pore-canal system in Tremataspis is supported in this study, but the suggested homologies between these canals and other parts of the thyestiid vasculature to those in non-thyestiid osteostracans remain unclear. This study shows that three-dimensional modeling of high-resolution data can provide histological and structural details that can help clarify homology issues and elucidate the evolution of dermal hard tissues in osteostracans. In extension, this can give insights into how these tissues relate to those found among jawed vertebrates.


Asunto(s)
Evolución Biológica , Fósiles , Animales , Maxilares , Esqueleto , Vertebrados
9.
Nature ; 427(6973): 412-3, 2004 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-14749820

RESUMEN

Several discoveries of Late Devonian tetrapods (limbed vertebrates) have been made during the past two decades, but each has been confined to one locality. Here we describe a tetrapod jaw of about 365 million years (Myr) old from the Famennian of Belgium, which is the first from western continental Europe. The jaw closely resembles that of Ichthyostega, a Famennian tetrapod hitherto known only from Greenland. The environment of this fossil provides information about the conditions that prevailed just before the virtual disappearance of tetrapods from the fossil record for 20 Myr.


Asunto(s)
Fósiles , Maxilares/anatomía & histología , Vertebrados/anatomía & histología , Animales , Bélgica , Geografía , Groenlandia , Factores de Tiempo
10.
Elife ; 92020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33317696

RESUMEN

The ontogenetic trajectory of a marginal jawbone of Lophosteus superbus (Late Silurian, 422 Million years old), the phylogenetically most basal stem osteichthyan, visualized by synchrotron microtomography, reveals a developmental relationship between teeth and dermal odontodes that is not evident from the adult morphology. The earliest odontodes are two longitudinal founder ridges formed at the ossification center. Subsequent odontodes that are added lingually to the ridges turn into conical teeth and undergo cyclic replacement, while those added labially achieve a stellate appearance. Stellate odontodes deposited directly on the bony plate are aligned with the alternate files of teeth, whereas new tooth positions are inserted into the files of sequential addition when a gap appears. Successive teeth and overgrowing odontodes show hybrid morphologies around the oral-dermal boundary, suggesting signal cross-communication. We propose that teeth and dermal odontodes are modifications of a single system, regulated and differentiated by the oral and dermal epithelia.


Human teeth are an example of odontodes: hard structures made of a material called dentine that are sometimes coated in enamel. Teeth are the only odontodes humans have, but other vertebrates (animals with backbones) have tooth-like scales on their skin. These structures are called dermal odontodes, and sharks and rays, for example, are covered with them. How these structures evolved, and whether teeth or dermal odontodes developed first, continues to spark great discussion among palaeontologists. Some researchers think that teeth evolved from dermal odontodes, a theory known as the 'scales-to-teeth' hypothesis. Others think dermal odontodes are distinct from teeth because they lack the same spatial organization. To investigate this further, palaeontologists are looking at the earliest examples of odontodes they can find: fossils of early vertebrates that carry both teeth and dermal odontodes. Here, Chen et al. have studied Lophosteus, one of the earliest bony fishes that lived more than 400 million years ago, to explore early tooth evolution and growth patterns. Chen et al. digitally dissected a fossilized Lophosteus jawbone using submicron X-ray imaging, a technique with resolution to less than one millionth of a metre. Imaging thin sections of the specimen, found in Estonia, Chen et al. reconstructed the entire sequence of odontode development in the bony fish in 3D. The analysis showed that teeth and dermal odontodes initially take shape together but differentiate as they grow, presumably instructed to do so by various developmental signals. However, at a later stage, the two types of odontodes become similar in appearance again, suggesting that they respond to each other's signals. For example, as the jawbone grows, dermal odontodes overgrow the earliest formed teeth. These younger odontodes resemble teeth, while the new teeth developing near the dermal odontodes take after dermal odontodes. These findings suggest that teeth and dermal odontodes are not wholly separate systems but, instead, are closely related on a molecular level. The results also show that contrary to the 'scale-to-teeth' hypothesis, teeth do not evolve from fully formed dermal odontodes, rather the two types of odontodes form out of one founder. This research builds on our knowledge from modern sharks and points to a previously unrecognised evolutionary relationship between teeth and dermal odontodes. It also furthers our understanding of how molecular regulation controls development.


Asunto(s)
Evolución Biológica , Dentición , Peces/anatomía & histología , Fósiles , Odontogénesis , Piel/anatomía & histología , Diente/anatomía & histología , Animales , Filogenia , Piel/diagnóstico por imagen , Sincrotrones , Diente/diagnóstico por imagen , Microtomografía por Rayos X
11.
Science ; 369(6500): 211-216, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32647004

RESUMEN

The dentitions of extant fishes and land vertebrates vary in both pattern and type of tooth replacement. It has been argued that the common ancestral condition likely resembles the nonmarginal, radially arranged tooth files of arthrodires, an early group of armoured fishes. We used synchrotron microtomography to describe the fossil dentitions of so-called acanthothoracids, the most phylogenetically basal jawed vertebrates with teeth, belonging to the genera Radotina, Kosoraspis, and Tlamaspis (from the Early Devonian of the Czech Republic). Their dentitions differ fundamentally from those of arthrodires; they are marginal, carried by a cheekbone or a series of short dermal bones along the jaw edges, and teeth are added lingually as is the case in many chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods). We propose these characteristics as ancestral for all jawed vertebrates.


Asunto(s)
Evolución Biológica , Dentición , Maxilares/anatomía & histología , Vertebrados/anatomía & histología , Vertebrados/clasificación , Animales , República Checa , Tomografía con Microscopio Electrónico , Fósiles , Filogenia , Sincrotrones , Diente/anatomía & histología
12.
Curr Biol ; 28(16): 2607-2615.e3, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30078565

RESUMEN

The Cretaceous-Palaeogene (K-Pg) mass extinction profoundly altered vertebrate ecosystems and prompted the radiation of many extant clades [1, 2]. Sharks (Selachimorpha) were one of the few larger-bodied marine predators that survived the K-Pg event and are represented by an almost-continuous dental fossil record. However, the precise dynamics of their transition through this interval remain uncertain [3]. Here, we apply 2D geometric morphometrics to reconstruct global and regional dental morphospace variation among Lamniformes (Mackerel sharks) and Carcharhiniformes (Ground sharks). These clades are prevalent predators in today's oceans, and were geographically widespread during the late Cretaceous-early Palaeogene. Our results reveal a decoupling of morphological disparity and taxonomic richness. Indeed, shark disparity was nearly static across the K-Pg extinction, in contrast to abrupt declines among other higher-trophic-level marine predators [4, 5]. Nevertheless, specific patterns indicate that an asymmetric extinction occurred among lamniforms possessing low-crowned/triangular teeth and that a subsequent proliferation of carcharhiniforms with similar tooth morphologies took place during the early Paleocene. This compositional shift in post-Mesozoic shark lineages hints at a profound and persistent K-Pg signature evident in the heterogeneity of modern shark communities. Moreover, such wholesale lineage turnover coincided with the loss of many cephalopod [6] and pelagic amniote [5] groups, as well as the explosive radiation of middle trophic-level teleost fishes [1]. We hypothesize that a combination of prey availability and post-extinction trophic cascades favored extant shark antecedents and laid the foundation for their extensive diversification later in the Cenozoic [7-10].


Asunto(s)
Dentición , Extinción Biológica , Fósiles/anatomía & histología , Tiburones/anatomía & histología , Animales , Evolución Biológica , Diente/anatomía & histología
13.
Biol Rev Camb Philos Soc ; 92(2): 1189-1212, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27194072

RESUMEN

Recent advances in synchrotron imaging allow us to study the three-dimensional (3D) histology of vertebrate fossils, including microfossils (e.g. teeth and scales) of early jawed vertebrates. These microfossils can often be scanned at submicron resolution (<1 µm) because of their small size. The resulting voxel (3D pixel) stacks can be processed into virtual thin sections revealing almost every internal detail of the samples, comparable to traditional thin sections. In addition, 3D models of the internal microanatomical structures, such as embedded odontodes and vasculature, can be assembled and examined in situ. Scales of two early osteichthyans, Psarolepis romeri from the Early Devonian of China and Andreolepis hedei from the Late Silurian of Sweden, were scanned using propagation phase-contrast synchrotron X-ray microtomography (PPC-SRµCT), and 3D models of internal canal systems and buried odontodes were created from the scans. Based on these new data, we review the evolutionary origin of cosmine and its associated pore-canal system, which has been long recognized as a synapomorphy of sarcopterygians. The first odontode that appeared during growth shows almost identical morphology in the two scales, but the second odontode of the Psarolepis scale shows a distinctive morphology with several pores on the surface. It is suggested that a shift from ridge-like odontode to pore-bearing odontode was the key step in the origin of cosmine, which was then elaborated further in more-derived sarcopterygians. We perform a detailed comparison between the two scales and propose a primary homology framework to generate microanatomical characters, which can be used in the phylogenetic analysis of early osteichthyans when more 3D data become available. Our results highlight the importance of 3D data for the study of histology and ontogeny of the dermal skeleton of early jawed vertebrates, especially scales of the polyodontode type. The traditional microvertebrate collection is not only useful for biostratigraphic studies, but also preserves invaluable biological information about the growth of vertebrate hard tissues. Today, we are only beginning to understand the biological meaning of the new 3D data. The increasing availability of such data will enable, and indeed require, a complete revision of traditional palaeohistological studies on early vertebrates.


Asunto(s)
Evolución Biológica , Peces/anatomía & histología , Fósiles , Escamas de Animales/anatomía & histología , Animales , China , Peces/clasificación , Peces/crecimiento & desarrollo , Filogenia
14.
R Soc Open Sci ; 4(5): 161084, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28573003

RESUMEN

The numerous cushion-shaped tooth-bearing plates attributed to the stem group osteichthyan Lophosteus superbus, which are argued here to represent an early form of the osteichthyan inner dental arcade, display a previously unknown and presumably primitive mode of tooth shedding by basal hard tissue resorption. They carry regularly spaced, recumbent, gently recurved teeth arranged in transverse tooth files that diverge towards the lingual margin of the cushion. Three-dimensional reconstruction from propagation phase-contrast synchrotron microtomography (PPC-SRµCT) reveals remnants of the first-generation teeth embedded in the basal plate, a feature never previously observed in any taxon. These teeth were shed by semi-basal resorption with the periphery of their bases retained as dentine rings. The rings are highly overlapped, which evidences tooth shedding prior to adding the next first-generation tooth at the growing edge of the plate. The first generation of teeth is thus diachronous. Successor teeth at the same sites underwent cyclical replacing and shedding through basal resorption, producing stacks of buried resorption surfaces separated by bone of attachment. The number and spatial arrangement of resorption surfaces elucidates that basal resorption of replacement teeth had taken place at the older tooth sites before the addition of the youngest first-generation teeth at the lingual margin. Thus, the replacement tooth buds cannot have been generated by a single permanent dental lamina at the lingual edge of the tooth cushion, but must have arisen either from successional dental laminae associated with the individual predecessor teeth, or directly from the dental epithelium of these teeth. The virtual histological dissection of these Late Silurian microfossils broadens our understanding of the development of the gnathostome dental systems and the acquisition of the osteichthyan-type of tooth replacement.

15.
Sci Rep ; 6: 36345, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27821855

RESUMEN

The end-Permian mass extinction constituted the most devastating biotic crisis of the Phanerozoic. Its aftermath was characterized by harsh marine conditions incorporating volcanically induced oceanic warming, widespread anoxia and acidification. Bio-productivity accordingly experienced marked fluctuations. In particular, low palaeolatitude hard substrate communities from shallow seas fringing Western Pangaea and the Tethyan Realm were extremely impoverished, being dominated by monogeneric colonies of filter-feeding microconchid tubeworms. Here we present the first equivalent field data for Boreal hard substrate assemblages from the earliest Triassic (Induan) of East Greenland. This region bordered a discrete bio-realm situated at mid-high palaeolatitude (>30°N). Nevertheless, hard substrate biotas were compositionally identical to those from elsewhere, with microconchids encrusting Claraia bivalves and algal buildups on the sea floor. Biostratigraphical correlation further shows that Boreal microconchids underwent progressive tube modification and unique taxic diversification concordant with changing habitats over time. We interpret this as a post-extinction recovery and adaptive radiation sequence that mirrored coeval subequatorial faunas, and thus confirms hard substrate ecosystem depletion as a hallmark of the earliest Triassic interval globally.

16.
PeerJ ; 4: e2521, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833794

RESUMEN

Lophosteus superbus is one of only a handful of probable stem-group osteichthyans known from the fossil record. First collected and described in the late 19th century from the upper Silurian Saaremaa Cliff locality in Estonia, it is known from a wealth of disarticulated scales, fin spines, and bone fragments. In this study we provide the first description of the morphology and paleohistology of a fin spine and scale from Lophosteus using virtual thin sections and 3D reconstructions that were segmented using phase-contrast synchrotron X-ray microtomography. These data reveal that both structures have fully or partially buried odontodes, which retain fine morphological details in older generations, including sharp nodes and serrated ridgelets. The vascular architecture of the fin spine tip, which is composed of several layers of longitudinally directed bone vascular canals, is much more complex compared to the bulbous horizontal canals within the scale, but they both have distinctive networks of ascending canals within each individual odontode. Other histological characteristics that can be observed from the data are cell spaces and Sharpey's fibers that, when combined with the vascularization, could help to provide insights into the growth of the structure. The 3D data of the scales from Lophosteus superbus is similar to comparable data from other fossil osteichthyans, and the morphology of the reconstructed buried odontodes from this species is identical to scale material of Lophosteus ohesaarensis, casting doubt on the validity of that species. The 3D data presented in this paper is the first for fossil fin spines and so comparable data is not yet available. However, the overall morphology and histology seems to be similar to the structure of placoderm dermal plates. The 3D datasets presented here provide show that microtomography is a powerful tool for investigating the three-dimensional microstructure of fossils, which is difficult to study using traditional histological methods. These results also increase the utility of fin spines and scales suggest that these data are a potentially rich source of morphological data that could be used for studying questions relating to early vertebrate growth and evolution.

17.
J Morphol ; 276(8): 873-88, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25809461

RESUMEN

We used propagation phase contrast X-ray synchrotron microtomography to study the three-dimensional (3D) histology of scales of two osteostracans, Tremataspis and Oeselaspis, members of a jawless vertebrate group often cited as the sister group of jawed vertebrates. 3D-models of the canal systems and other internal structures are assembled based on the virtual thin section datasets and compared with previous models based on real thin sections. The primary homology framework of the canal systems in the two taxa is revised and new histological details are revealed based on the results of this work. There is no separation of vascular canals and lower mesh canals in the Tremataspis scale, contrary to previous results. The secondary upper mesh canals have a limited distribution to the anterior region of the Tremataspis scale. The upper and lower mesh canal systems of Tremataspis have different geometries, inferred to reflect different developmental origins: we interpret the upper system as a probable epithelial invagination, the lower system as entirely vascular. Oeselaspis has no equivalent of the upper mesh canal system. The upper mesh canal system of Tremataspis may have been sensory in function. In Oeselaspis, numerous polyp-shaped structures opening from the canal system onto the surface of the scale resemble the innervation tracts for neuromast organs. The growth of the Oeselaspis scale proceeds by addition of small odontodes containing unmineralized lacunae, which may further mineralize and become more compact. Our results highlight that 3D-histological investigation on scales and other dermal skeletons of osteostracans is necessary to fully appreciate the diversity of skeletal histologies in the group. Traditional 3D-models based on thin sections alone are not reliable and should no longer be used as the basis for homology assessments or functional hypotheses.


Asunto(s)
Fósiles/diagnóstico por imagen , Maxilares/diagnóstico por imagen , Vertebrados/anatomía & histología , Animales , Imagenología Tridimensional , Microtomografía por Rayos X
18.
PLoS One ; 8(8): e71890, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951264

RESUMEN

The debate about the origin of the vertebrate dentition has been given fresh fuel by new fossil discoveries and developmental studies of extant animals. Odontodes (teeth or tooth-like structures) can be found in two distinct regions, the 'internal' oropharyngeal cavity and the 'external' skin. A recent hypothesis argues that regularly patterned odontodes is a specific oropharyngeal feature, whereas odontodes in the external skeleton lack this organization. However, this argument relies on the skeletal system of modern chondrichthyans (sharks and their relatives), which differ from other gnathostome (jawed vertebrate) groups in not having dermal bones associated with the odontodes. Their external skeleton is also composed of monoodontode 'placoid scales', whereas the scales of most early fossil gnathostomes are polyodontode, i.e. constructed from several odontodes on a shared bony base. Propagation phase contrast X-ray Synchrotron microtomography (PPC-SRµCT) is used to study the polyodontode scales of the early bony fish Andreolepis hedei. The odontodes constructing a single scale are reconstructed in 3D, and a linear and regular growth mechanism similar to that in a gnathostome dentition is confirmed, together with a second, gap-filling growth mechanism. Acanthodian tooth whorls are described, which show that ossification of the whorl base preceded and probably patterned the development of the dental lamina, in contrast to the condition in sharks where the dental lamina develops early and patterns the dentition.The new findings reveal, for the first time, how polyodontode scales grow in 3D in an extinct bony fish. They show that dentition-like odontode patterning occurs on scales and that the primary patterning unit of a tooth whorl may be the bony base rather than the odontodes it carries. These results contradict the hypothesis that oropharyngeal and external odontode skeletons are fundamentally separate and suggest that the importance of dermal bone interactions to odontode patterning has been underestimated.


Asunto(s)
Peces/anatomía & histología , Diente/anatomía & histología , Animales , Evolución Biológica , Peces/clasificación , Peces/genética , Maxilares , Modelos Anatómicos , Odontogénesis/genética , Filogenia , Diente/crecimiento & desarrollo , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA