Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Ann Neurol ; 86(4): 517-526, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31376168

RESUMEN

OBJECTIVE: X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease with adult onset dystonia and subsequent parkinsonism. Postmortem and imaging studies revealed remarkable striatal pathology, with a predominant involvement of the striosomal compartment in the early phase. Here, we aimed to disentangle sequential neurodegeneration in the striatum of XDP patients, provide evidence for preferential loss of distinct striatal areas in the early phase, and investigate whether iron accumulation is present. METHODS: We used multimodal structural magnetic resonance imaging (voxel-based morphometry and relaxometry) in 18 male XDP patients carrying a TAF1 mutation and 19 age-matched male controls. RESULTS: Voxel-based relaxometry and morphometry revealed (1) a cluster in the anteromedial putamen showing high iron content and severe atrophy (-55%) and (2) a cluster with reduced relaxation rates as a marker for increased water levels and a lower degree of atrophy (-20%) in the dorsolateral putamen. Iron deposition correlated with the degree of atrophy (ρ = -0.585, p = 0.011) and disease duration (ρ = 0.632, p = 0.005) in the anteromedial putamen. In the dorsolateral putamen, sensorimotor putamen atrophy correlated with disease severity (ρ = -0.649, p = 0.004). INTERPRETATION: This multimodal approach identified a patchy pattern of atrophy within the putamen. Atrophy is advanced and associated with iron accumulation in rostral regions of the striatum, whereas neurodegeneration is moderate and still ongoing in dorsolateral areas. Given the short disease duration and predominant dystonic phenotype, these results are well in line with early and preferential degeneration of striosome-rich striatal areas in XDP. ANN NEUROL 2019;86:517-526.


Asunto(s)
Enfermedades de los Ganglios Basales/diagnóstico por imagen , Enfermedades de los Ganglios Basales/patología , Trastornos Distónicos/diagnóstico por imagen , Trastornos Distónicos/patología , Degeneración Nerviosa/patología , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/patología , Adulto , Atrofia/patología , Enfermedades de los Ganglios Basales/complicaciones , Enfermedades de los Ganglios Basales/metabolismo , Estudios de Casos y Controles , Trastornos Distónicos/complicaciones , Humanos , Hierro/metabolismo , Imagen por Resonancia Magnética , Masculino , Neuroimagen , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/metabolismo , Putamen/diagnóstico por imagen , Putamen/metabolismo , Putamen/patología , Índice de Severidad de la Enfermedad , Adulto Joven
2.
J Neurosci ; 34(16): 5529-38, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24741043

RESUMEN

Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.


Asunto(s)
Amígdala del Cerebelo/patología , Fumar Marihuana/patología , Núcleo Accumbens/patología , Adolescente , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Fumar Marihuana/fisiopatología , Tamaño de los Órganos , Índice de Severidad de la Enfermedad , Adulto Joven
3.
PLoS One ; 19(3): e0299528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38466739

RESUMEN

BACKGROUND: Rates of depression and addiction have risen drastically over the past decade, but the lack of integrative techniques remains a barrier to accurate diagnoses of these mental illnesses. Changes in reward/aversion behavior and corresponding brain structures have been identified in those with major depressive disorder (MDD) and cocaine-dependence polysubstance abuse disorder (CD). Assessment of statistical interactions between computational behavior and brain structure may quantitatively segregate MDD and CD. METHODS: Here, 111 participants [40 controls (CTRL), 25 MDD, 46 CD] underwent structural brain MRI and completed an operant keypress task to produce computational judgment metrics. Three analyses were performed: (1) linear regression to evaluate groupwise (CTRL v. MDD v. CD) differences in structure-behavior associations, (2) qualitative and quantitative heatmap assessment of structure-behavior association patterns, and (3) the k-nearest neighbor machine learning approach using brain structure and keypress variable inputs to discriminate groups. RESULTS: This study yielded three primary findings. First, CTRL, MDD, and CD participants had distinct structure-behavior linear relationships, with only 7.8% of associations overlapping between any two groups. Second, the three groups had statistically distinct slopes and qualitatively distinct association patterns. Third, a machine learning approach could discriminate between CTRL and CD, but not MDD participants. CONCLUSIONS: These findings demonstrate that variable interactions between computational behavior and brain structure, and the patterns of these interactions, segregate MDD and CD. This work raises the hypothesis that analysis of interactions between operant tasks and structural neuroimaging might aide in the objective classification of MDD, CD and other mental health conditions.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos Relacionados con Sustancias , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Trastornos Relacionados con Sustancias/psicología
4.
Nat Rev Neurosci ; 9(3): 222-34, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18285800

RESUMEN

Dystonias comprise a group of movement disorders that are characterized by involuntary movements and postures. Insight into the nature of neuronal dysfunction has been provided by the identification of genes responsible for primary dystonias, the characterization of animal models and functional evaluations and in vivo brain imaging of patients with dystonia. The data suggest that alterations in neuronal development and communication within the brain create a susceptible substratum for dystonia. Although there is no overt neurodegeneration in most forms of dystonia, there are functional and microstructural brain alterations. Dystonia offers a window into the mechanisms whereby subtle changes in neuronal function, particularly in sensorimotor circuits that are associated with motor learning and memory, can corrupt normal coordination and lead to a disabling motor disorder.


Asunto(s)
Distonía/fisiopatología , Animales , Modelos Animales de Enfermedad , Discinesias/etiología , Distonía/genética , Distonía/patología , Distonía/terapia , Humanos , Modelos Neurológicos , Mutación , Red Nerviosa/patología
5.
Curr Neuropharmacol ; 11(1): 3-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23814533

RESUMEN

Focal dystonias are dystonias that affect one part of the body, and are sometimes task-specific. Brain imaging and transcranial magnetic stimulation techniques have been valuable in defining the pathophysiology of dystonias in general, and are particularly amenable to studying focal dystonias. Over the past few years, several common themes have emerged in the imaging literature, and this review summarizes these findings and suggests some ways in which these distinct themes might all point to one common systems-level mechanism for dystonia. These themes include (1) the role of premotor regions in focal dystonia, (2) the role of the sensory system and sensorimotor integration in focal dystonia, (3) the role of decreased inhibition/increased excitation in focal dystonia, and (4) the role of brain imaging in evaluating and guiding treatment of focal dystonias. The data across these themes, together with the features of dystonia itself, are consistent with a hypothesis that all dystonias reflect excessive output of postural control/stabilization systems in the brain, and that the mechanisms for dystonia reflect amplification of an existing functional system, rather than recruitment of the wrong motor programs. Imaging is currently being used to test treatment effectiveness, and to visually guide treatment of dystonia, such as placement of deep brain stimulation electrodes. In the future, it is hoped that imaging may be used to individualize treatments across behavioral, pharmacologic, and surgical domains, thus optimizing both the speed and effectiveness of treatment for any given individual with focal dystonia.

6.
Front Neurosci ; 17: 1178473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954873

RESUMEN

Cortico-striato-thalamo-cortical (CSTC) loops are fundamental organizing units in mammalian brains. CSTCs process limbic, associative, and sensorimotor information in largely separated but interacting networks. CTSC loops pass through paired striatal compartments, striosome (aka patch) and matrix, segregated pools of medium spiny projection neurons with distinct embryologic origins, cortical/subcortical structural connectivity, susceptibility to injury, and roles in behaviors and diseases. Similarly, striatal dopamine modulates activity in striosome and matrix in opposite directions. Routing CSTCs through one compartment may be an anatomical basis for regulating discrete functions. We used differential structural connectivity, identified through probabilistic diffusion tractography, to distinguish the striatal compartments (striosome-like and matrix-like voxels) in living humans. We then mapped compartment-specific projections and quantified structural connectivity between each striatal compartment, the globus pallidus interna (GPi), and 20 thalamic nuclei in 221 healthy adults. We found that striosome-originating and matrix-originating streamlines were segregated within the GPi: striosome-like connectivity was significantly more rostral, ventral, and medial. Striato-pallido-thalamic streamline bundles that were seeded from striosome-like and matrix-like voxels transited spatially distinct portions of the white matter. Matrix-like streamlines were 5.7-fold more likely to reach the GPi, replicating animal tract-tracing studies. Striosome-like connectivity dominated in six thalamic nuclei (anteroventral, central lateral, laterodorsal, lateral posterior, mediodorsal-medial, and medial geniculate). Matrix-like connectivity dominated in seven thalamic nuclei (centromedian, parafascicular, pulvinar-anterior, pulvinar-lateral, ventral lateral-anterior, ventral lateral-posterior, ventral posterolateral). Though we mapped all thalamic nuclei independently, functionally-related nuclei were matched for compartment-level bias. We validated these results with prior thalamostriate tract tracing studies in non-human primates and other species; where reliable data was available, all agreed with our measures of structural connectivity. Matrix-like connectivity was lateralized (left > right hemisphere) in 18 thalamic nuclei, independent of handedness, diffusion protocol, sex, or whether the nucleus was striosome-dominated or matrix-dominated. Compartment-specific biases in striato-pallido-thalamic structural connectivity suggest that routing CSTC loops through striosome-like or matrix-like voxels is a fundamental mechanism for organizing and regulating brain networks. Our MRI-based assessments of striato-thalamic connectivity in humans match and extend the results of prior tract tracing studies in animals. Compartment-level characterization may improve localization of human neuropathologies and improve neurosurgical targeting in the GPi and thalamus.

7.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993354

RESUMEN

We previously observed sustained fMRI BOLD signal in the basal ganglia in focal hand dystonia patients after a repetitive finger tapping task. Since this was observed in a task-specific dystonia, for which excessive task repetition may play a role in pathogenesis, in the current study we asked if this effect would be observed in a focal dystonia (cervical dystonia [CD]) that is not considered task-specific or thought to result from overuse. We evaluated fMRI BOLD signal time courses before, during, and after the finger tapping task in CD patients. We observed patient/control differences in post-tapping BOLD signal in left putamen and left cerebellum during the non-dominant (left) hand tapping condition, reflecting abnormally sustained BOLD signal in CD. BOLD signals in left putamen and cerebellum were also abnormally elevated in CD during tapping itself and escalated as tapping was repeated. There were no cerebellar differences in the previously studied FHD cohort, either during or after tapping. We conclude that some elements of pathogenesis and/or pathophysiology associated with motor task execution/repetition may not be limited to task-specific dystonias, but there may be regional differences in these effects across dystonias, associated with different types of motor control programs.

8.
J Speech Lang Hear Res ; 63(2): 421-432, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32091959

RESUMEN

Purpose Adductor spasmodic dysphonia (ADSD), the most common form of spasmodic dysphonia, is a debilitating voice disorder characterized by hyperactivity and muscle spasms in the vocal folds during speech. Prior neuroimaging studies have noted excessive brain activity during speech in participants with ADSD compared to controls. Speech involves an auditory feedback control mechanism that generates motor commands aimed at eliminating disparities between desired and actual auditory signals. Thus, excessive neural activity in ADSD during speech may reflect, at least in part, increased engagement of the auditory feedback control mechanism as it attempts to correct vocal production errors detected through audition. Method To test this possibility, functional magnetic resonance imaging was used to identify differences between participants with ADSD (n = 12) and age-matched controls (n = 12) in (a) brain activity when producing speech under different auditory feedback conditions and (b) resting-state functional connectivity within the cortical network responsible for vocalization. Results As seen in prior studies, the ADSD group had significantly higher activity than the control group during speech with normal auditory feedback (compared to a silent baseline task) in three left-hemisphere cortical regions: ventral Rolandic (sensorimotor) cortex, anterior planum temporale, and posterior superior temporal gyrus/planum temporale. Importantly, this same pattern of hyperactivity was also found when auditory feedback control of speech was eliminated through masking noise. Furthermore, the ADSD group had significantly higher resting-state functional connectivity between sensorimotor and auditory cortical regions within the left hemisphere as well as between the left and right hemispheres. Conclusions Together, our results indicate that hyperactivation in the cortical speech network of individuals with ADSD does not result from hyperactive auditory feedback control mechanisms and rather is likely related to impairments in somatosensory feedback control and/or feedforward control mechanisms.


Asunto(s)
Disfonía/fisiopatología , Retroalimentación Sensorial/fisiología , Imagen por Resonancia Magnética , Corteza Sensoriomotora/fisiopatología , Voz/fisiología , Estudios de Casos y Controles , Disfonía/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Sensoriomotora/diagnóstico por imagen , Habla/fisiología , Medición de la Producción del Habla , Análisis y Desempeño de Tareas
9.
Cereb Cortex Commun ; 1(1): tgaa078, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34296137

RESUMEN

Transcriptomics, regional cerebral blood flow (rCBF), and a virtual reality-based spatial motor task were integrated using mediation analysis in a novel demonstration of "imaging omics." Data collected in National Collegiate Athletic Association (NCAA) Division I football athletes cleared for play before in-season training showed significant relationships in 1) elevated levels of miR-30d and miR-92a to elevated putamen rCBF, 2) elevated putamen rCBF to compromised Balance scores, and 3) compromised Balance scores to elevated microRNA (miRNA) levels. rCBF acted as a consistent mediator variable (Sobel's test P < 0.05) between abnormal miRNA levels and compromised Balance scores. Given the involvement of these miRNAs in inflammation and immune function and that vascular perfusion is a component of the inflammatory response, these findings support a chronic inflammatory model in these athletes with 11 years of average football exposure. rCBF, a systems biology measure, was necessary for miRNA to affect behavior.

10.
Front Neurol ; 10: 265, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31019484

RESUMEN

In a previous report showing white matter microstructural hemispheric asymmetries medial to the pallidum in focal dystonias, we showed preliminary evidence that this abnormality was reduced 4 weeks after botulinum toxin (BTX) injections. In the current study we report the completed treatment study in a full-size cohort of CD patients (n = 14). In addition to showing a shift toward normalization of the hemispheric asymmetry, we evaluated clinical relevance of these findings by relating white matter changes to degree of symptom improvement. We also evaluated whether the magnitude of the white matter asymmetry before treatment was related to severity, laterality, duration of dystonia, and/or number of previous BTX injections. Our results confirm the findings of our preliminary report: we observed significant fractional anisotropy (FA) changes medial to the pallidum 4 weeks after BTX in CD participants that were not observed in controls scanned at the same interval. There was a significant relationship between magnitude of hemispheric asymmetry and dystonia symptom improvement, as measured by percent reduction in dystonia scale scores. There was also a trend toward a relationship between magnitude of pre-injection white matter asymmetry and symptom severity, but not symptom laterality, disorder duration, or number of previous BTX injections. Post-hoc analyses suggested the FA changes at least partially reflected changes in pathophysiology, but a dissociation between patient perception of benefit from injections and FA changes suggested the changes did not reflect changes to the primary "driver" of the dystonia. In contrast, there were no changes or group differences in DTI diffusivity measures, suggesting the hemispheric asymmetry in CD does not reflect irreversible white matter tissue loss. These findings support the hypothesis that central nervous system white matter changes are involved in the mechanism by which BTX exerts clinical benefit.

11.
Neuroimage Clin ; 17: 835-846, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527488

RESUMEN

Preliminary evidence from postmortem studies of X-linked dystonia-parkinsonism (XDP) suggests tissue loss may occur first and/or most severely in the striatal striosome compartment, followed later by cell loss in the matrix compartment. However, little is known about how this relates to pathogenesis and pathophysiology. While MRI cannot visualize these striatal compartments directly in humans, differences in relative gradients of afferent cortical connectivity across compartments (weighted toward paralimbic versus sensorimotor cortex, respectively) can be used to infer potential selective loss in vivo. In the current study we evaluated relative connectivity of paralimbic versus sensorimotor cortex with the caudate and putamen in 17 individuals with XDP and 17 matched controls. Although caudate and putamen volumes were reduced in XDP, there were no significant reductions in either "matrix-weighted", or "striosome-weighted" connectivity. In fact, paralimbic connectivity with the putamen was elevated, rather than reduced, in XDP. This was driven most strongly by elevated putamen connectivity with the anterior insula. There was no relationship of these findings to disease duration or striatal volume, suggesting insula and/or paralimbic connectivity in XDP may develop abnormally and/or increase in the years before symptom onset.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Trastornos Distónicos/patología , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Putamen/diagnóstico por imagen , Adulto , Mapeo Encefálico , Estudios de Casos y Controles , Estudios de Cohortes , Trastornos Distónicos/diagnóstico por imagen , Femenino , Lateralidad Funcional , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Lineales , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
12.
Brain Res ; 1151: 62-73, 2007 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-17448452

RESUMEN

The functional anatomical role of the basal ganglia in bimanual coordination is unknown. Utilizing functional MRI (fMRI) at 3 T, we analyzed brain activity during three different typing tasks. The first task consisted of typing with parallel finger movements (moving left to right with four fingers on both hands). The second task was mirror movements (moving little finger to index finger on both hands), and the third task compared a resting condition with right-handed unimanual typing (moving little finger to index finger). Task dependent BOLD activity in the supplementary motor area (SMA) and dorsolateral premotor areas was observed. In addition, activation patterns were present in the cerebellar vermis during bimanual coordination tasks, with greater activation in the parallel than in the mirror condition. Finally, we also identified activity in the putamen during the tasks described above. Interestingly, putaminal activity was greatest during the period of motor task initiation, and activity during this period was greatest in the parallel condition. Our results suggest a critical role of the basal ganglia in the neural control of bimanual coordination.


Asunto(s)
Ganglios Basales/fisiología , Lateralidad Funcional/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Adulto , Análisis de Varianza , Ganglios Basales/irrigación sanguínea , Mapeo Encefálico , Femenino , Dedos/inervación , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Oxígeno/sangre , Análisis y Desempeño de Tareas
14.
Front Psychol ; 8: 122, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28270776

RESUMEN

This study examines how the domains of reward and attention, which are often studied as independent processes, in fact interact at a systems level. We operationalize divided attention with a continuous performance task and variables from signal detection theory (SDT), and reward/aversion with a keypress task measuring approach/avoidance in the framework of relative preference theory (RPT). Independent experiments with the same subjects showed a significant association between one SDT and two RPT variables, visualized as a three-dimensional structure. Holding one of these three variables constant, further showed a significant relationship between a loss aversion-like metric from the approach/avoidance task, and the response bias observed during the divided attention task. These results indicate that a more liberal response bias under signal detection (i.e., a higher tolerance for noise, resulting in a greater proportion of false alarms) is associated with higher "loss aversion." Furthermore, our functional model suggests a mechanism for processing constraints with divided attention and reward/aversion. Together, our results argue for a systematic relationship between divided attention and reward/aversion processing in humans.

15.
Front Neurosci ; 11: 136, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28512395

RESUMEN

Musical preference is highly individualized and is an area of active study to develop methods for its quantification. Recently, preference-based behavior, associated with activity in brain reward circuitry, has been shown to follow lawful, quantifiable patterns, despite broad variation across individuals. These patterns, observed using a keypress paradigm with visual stimuli, form the basis for relative preference theory (RPT). Here, we sought to determine if such patterns extend to non-visual domains (i.e., audition) and dynamic stimuli, potentially providing a method to supplement psychometric, physiological, and neuroimaging approaches to preference quantification. For this study, we adapted our keypress paradigm to two sets of stimuli consisting of seventeenth to twenty-first century western art music (Classical) and twentieth to twenty-first century jazz and popular music (Popular). We studied a pilot sample and then a separate primary experimental sample with this paradigm, and used iterative mathematical modeling to determine if RPT relationships were observed with high R2 fits. We further assessed the extent of heterogeneity in the rank ordering of keypress-based responses across subjects. As expected, individual rank orderings of preferences were quite heterogeneous, yet we observed mathematical patterns fitting these data similar to those observed previously with visual stimuli. These patterns in music preference were recurrent across two cohorts and two stimulus sets, and scaled between individual and group data, adhering to the requirements for lawfulness. Our findings suggest a general neuroscience framework that predicts human approach/avoidance behavior, while also allowing for individual differences and the broad diversity of human choices; the resulting framework may offer novel approaches to advancing music neuroscience, or its applications to medicine and recommendation systems.

16.
Neuroreport ; 17(12): 1251-5, 2006 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-16951564

RESUMEN

The pathophysiology of dystonia is still poorly understood. We used diffusion tensor imaging to screen for white matter abnormalities in regions between the basal ganglia and the thalamus in cervical and hand dystonia patients. All patients exhibited an abnormal hemispheric asymmetry in a focal region between the pallidum and the thalamus. This asymmetry was absent 4 weeks after the same patients were treated with intramuscular botulinum toxin injections. These findings represent a new systems-level abnormality in dystonia, which may lead to new insights about the pathophysiology of movement disorders. More generally, these findings demonstrate central nervous system changes following peripheral reductions in muscle activity. This raises the possibility that we have observed activity-dependent white matter plasticity in the adult human brain.


Asunto(s)
Antidiscinéticos/uso terapéutico , Toxinas Botulínicas/uso terapéutico , Encéfalo , Trastornos Distónicos/tratamiento farmacológico , Trastornos Distónicos/patología , Adulto , Encéfalo/anomalías , Encéfalo/efectos de los fármacos , Encéfalo/patología , Estudios de Casos y Controles , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Lateralidad Funcional , Humanos , Masculino , Persona de Mediana Edad
17.
Brain Behav ; 6(5): e00459, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27257518

RESUMEN

INTRODUCTION: Decades of research have demonstrated the importance of social influence in initiation and maintenance of drug use, but little is known about neural mechanisms underlying social influence in young adults who use recreational drugs. METHODS: To better understand whether the neural and/or behavioral response to social influence differs in young adults using illicit drugs, 20 marijuana-using young adults (MJ) aged 18-25, and 20 controls (CON) performed a decision-making task in the context of social influence, while they underwent functional magnetic resonance imaging scans. A priori analyses focused on the nucleus accumbens (NAc), with post hoc analyses in the rest of the striatum. In this task, participants could choose to either follow or go against group influence. RESULTS: When subjects applied social information to response choice selection (independent of following or going against group influence), we observed activation in the middle striatum (caudate), in the MJ group only, that extended ventrally into the NAc. MJ users but not CON showed greater activation in the NAc but not the caudate while making choices congruent with group influence as opposed to choices going against group influence. Activation in the NAc when following social influence was associated with amount of drug use reported. In contrast, during the feedback phase of the task we observed significant NAc activation in both MJ and CON, along with dorsal caudate activation only in MJ participants. This NAc activation did not correlate with drug use. CONCLUSIONS: This study shows that MJ users, but not CON, show differential brain activation across striatal subregions when applying social information to make a decision, following versus going against a group of peers, or receiving positive feedback. The current work suggests that differential neural sensitivity to social influence in regions such as the striatum may contribute to the development and/or maintenance of marijuana use.


Asunto(s)
Núcleo Caudado/fisiología , Conducta de Elección/fisiología , Abuso de Marihuana/fisiopatología , Núcleo Accumbens/fisiología , Grupo Paritario , Conducta Social , Adolescente , Adulto , Núcleo Caudado/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Núcleo Accumbens/fisiopatología , Adulto Joven
18.
PLoS One ; 11(5): e0155302, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27171035

RESUMEN

BACKGROUND: Dystonia, a debilitating movement disorder characterized by abnormal fixed positions and/or twisting postures, is associated with dysfunction of motor control networks. While gross brain lesions can produce secondary dystonias, advanced neuroimaging techniques have been required to identify network abnormalities in primary dystonias. Prior neuroimaging studies have provided valuable insights into the pathophysiology of dystonia, but few directly assessed the gross volume of motor control regions, and to our knowledge, none identified abnormalities common to multiple types of idiopathic focal dystonia. METHODS: We used two gross volumetric segmentation techniques and one voxelwise volumetric technique (voxel based morphometry, VBM) to compare regional volume between matched healthy controls and patients with idiopathic primary focal dystonia (cervical, n = 17, laryngeal, n = 7). We used (1) automated gross volume measures of eight motor control regions using the FreeSurfer analysis package; (2) blinded, anatomist-supervised manual segmentation of the whole thalamus (also gross volume); and (3) voxel based morphometry, which measures local T1-weighted signal intensity and estimates gray matter density or volume at the level of single voxels, for both whole-brain and thalamus. RESULTS: Using both automated and manual gross volumetry, we found a significant volume decrease only in the thalamus in two focal dystonias. Decreases in whole-thalamic volume were independent of head and brain size, laterality of symptoms, and duration. VBM measures did not differ between dystonia and control groups in any motor control region. CONCLUSIONS: Reduced thalamic gross volume, detected in two independent analyses, suggests a common anatomical abnormality in cervical dystonia and spasmodic dysphonia. Defining the structural underpinnings of dystonia may require such complementary approaches.


Asunto(s)
Laringe/patología , Tálamo/patología , Tortícolis/patología , Demografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos
19.
PLoS One ; 10(9): e0135216, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26394306

RESUMEN

Individuals tend to give losses approximately 2-fold the weight that they give gains. Such approximations of loss aversion (LA) are almost always measured in the stimulus domain of money, rather than objects or pictures. Recent work on preference-based decision-making with a schedule-less keypress task (relative preference theory, RPT) has provided a mathematical formulation for LA similar to that in prospect theory (PT), but makes no parametric assumptions in the computation of LA, uses a variable tied to communication theory (i.e., the Shannon entropy or information), and works readily with non-monetary stimuli. We evaluated if these distinct frameworks described similar LA in healthy subjects, and found that LA during the anticipation phase of the PT-based task correlated significantly with LA related to the RPT-based task. Given the ease with which non-monetary stimuli can be used on the Internet, or in animal studies, these findings open an extensive range of applications for the study of loss aversion. Furthermore, the emergence of methodology that can be used to measure preference for both social stimuli and money brings a common framework to the evaluation of preference in both social psychology and behavioral economics.


Asunto(s)
Toma de Decisiones/fisiología , Adolescente , Adulto , Conducta de Elección , Femenino , Teoría del Juego , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Adulto Joven
20.
Front Hum Neurosci ; 9: 176, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25983682

RESUMEN

Loss aversion (LA), the idea that negative valuations have a higher psychological impact than positive ones, is considered an important variable in consumer research. The literature on aging and behavior suggests older individuals may show more LA, although it is not clear if this is an effect of aging in general (as in the continuum from age 20 and 50 years), or of the state of older age (e.g., past age 65 years). We also have not yet identified the potential biological effects of aging on the neural processing of LA. In the current study we used a cohort of subjects with a 30 year range of ages, and performed whole brain functional MRI (fMRI) to examine the ventral striatum/nucleus accumbens (VS/NAc) response during a passive viewing of affective faces with model-based fMRI analysis incorporating behavioral data from a validated approach/avoidance task with the same stimuli. Our a priori focus on the VS/NAc was based on (1) the VS/NAc being a central region for reward/aversion processing; (2) its activation to both positive and negative stimuli; (3) its reported involvement with tracking LA. LA from approach/avoidance to affective faces showed excellent fidelity to published measures of LA. Imaging results were then compared to the behavioral measure of LA using the same affective faces. Although there was no relationship between age and LA, we observed increasing neural differential sensitivity (NDS) of the VS/NAc to avoidance responses (negative valuations) relative to approach responses (positive valuations) with increasing age. These findings suggest that a central region for reward/aversion processing changes with age, and may require more activation to produce the same LA behavior as in younger individuals, consistent with the idea of neural efficiency observed with high IQ individuals showing less brain activation to complete the same task.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA